Georgia Institute Of Technology

The George W. Woodruff
School of Mechanical Engineering

Ph.D. Qualifiers Exam - Spring Semester 2020

APPLIED MATH

EXAM AREA
\qquad
Assigned Number (DO NOT SIGN YOUR NAME)

* Please sign your name on the back of this page -

APPLIED MATH WRITTEN EXAM
SPRING 2020

1) Answer the following questions:

One useful transformation matrix is the Householder reflection matrix P. The idea behind this matrix is shown in the figure to the right. Here, a hyperplane is defined by a unit normal vector v. The vector x is reflected through this hyperplane into the vector r using the matrix P. So, $P x=r$, where $P=I-2 v v^{T}$ and I is the identity matrix. Note as well that $|x|=|r|$.

a) Derive P.
b) Show that P is orthonormal.

The Householder reflection matrix can be used to find the QR decomposition of a matrix given by $A=Q R$, where Q is an orthonormal matrix and R is a right (upper) triangular matrix.
c) Show how this decomposition can be used to find the inverse of the matrix A.

2) Answer the following question:

Given the following equation: $2 \frac{d^{2} y}{d x^{2}}+3 y+7=0$, for $-\infty<x<+\infty$
While we assume that we know a value for y at $\mathrm{x}=0$, find a series solution for y in powers of x .

3) Answer the following questions:

a.) Given the vector field $\vec{g}=\left(x^{2} y \hat{i}+\left(y^{3}-3 x\right) \hat{j}+4 z^{2} \hat{k}\right)$, determine the divergence and curl of $\overrightarrow{\mathrm{g}}$. Determine the locus of points in the $\mathrm{z}=0$ plane for which the divergence of this vector field vanishes.
b.) Evaluate the flux of the vector field $\vec{F}=\exp (2 x) \hat{i}+y \hat{j}$ over the surface of the unit cube shown below with corners at $(0,0,0)$ and $(1,1,1)$. Next, evaluate the flux through the surface of the unit cube if it is instead centered at the origin.

4) For $\frac{d^{2} \theta}{d t^{2}}+\frac{g}{l} \sin \theta=0$ with $\theta(0)=0.5$. Solve based on Euler's method with a step size of 0.5 and write the problem as a system of first order ODEs and give the complete solution at t $=2$.

