APPLIED MATH WRITTEN EXAM
SPRING 2019

1) Answer the following questions:
(a) Given the vector field $\vec{v}=\frac{(x \hat{i}+y \hat{j}+z \hat{k})}{R^{3}}$, where R is the magnitude of the vector $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, determine the divergence of \vec{v}.
(b) Evaluate the flux of the vector field $\overrightarrow{\mathrm{F}}=x \hat{i}+(y+z) \hat{j}+3 z^{2} \hat{k}$ over the surface of the unit cube shown below with corners at $(0,0,0)$ and $(1,1,1)$.

2) In view of least square errors, determine the values of " a_{1} " and " a_{2} " in $y=a_{1} x_{1}+a_{2} x_{1} x_{2}$ that would best fit the following given data:

x_{1}	1	2	3
x_{2}	1	2	3
y	5	4	3

3) A college student owes $\$ 1000$ to a credit card company, which charges simple interest at an annual rate of $\mathbf{1 0 \%}$. The student makes payments continuously at a constant rate of $\mathbf{\$ 1 0} / \mathrm{month}$ ($\$ 120 /$ year).
(a) Set up the initial value problem describing the situation.
(b) Solve the initial value problem of part (a).
(c) Find the time T it will take to pay off the debt.
4) Consider the following differential equation: $3 \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+4 y=g(t)$
with $g(t)=1-u_{\pi}(t)=\left\{\begin{array}{c}1 \text { when } 0 \leq t<\pi \\ 0 \text { when } t \geq \pi\end{array}\right.$
and $u_{\pi}(t)=\left\{\begin{array}{c}0 \text { when } 0 \leq t<\pi \\ 1 \text { when } t \geq \pi\end{array}\right.$
Assume the initial conditions: $y(0)=c$ and $\frac{d y(0)}{d t}=0$
Task: find $\mathbf{y}(\mathbf{t})$
Hint: Make use of the $\mathbf{2}$ following Laplace transformations ($\mathrm{L}=$ Laplace transform)

$f(t)=L^{-1}\{F(s)\}$	$\boldsymbol{F}(\boldsymbol{s})=\boldsymbol{L}\{\boldsymbol{f}(\boldsymbol{t})\}$	
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$,$s>a$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$,$s>a$

