APPLIED MATH WRITTEN EXAM SPRING 2019 1) Answer the following questions:

(a) Given the vector field  $\vec{v} = \frac{\left(x \ \hat{i} + y \ \hat{j} + z \ \hat{k}\right)}{R^3}$ , where R is the magnitude of the vector  $\vec{r} = x \ \hat{i} + y \ \hat{j} + z \ \hat{k}$ , determine the divergence of  $\vec{v}$ .

(b) Evaluate the flux of the vector field  $\vec{F} = x \hat{i} + (y+z) \hat{j} + 3z^2 \hat{k}$  over the surface of the unit cube shown below with corners at (0,0,0) and (1,1,1).



2) In view of least square errors, determine the values of "a<sub>1</sub>" and "a<sub>2</sub>" in  $y = a_1x_1 + a_2x_1x_2$  that would best fit the following given data:

| <b>X</b> 1            | 1 | 2 | 3 |
|-----------------------|---|---|---|
| <b>X</b> <sub>2</sub> | 1 | 2 | 3 |
| У                     | 5 | 4 | 3 |

3) A college student owes \$1000 to a credit card company, which charges simple interest at an annual rate of 10%. The student makes payments continuously at a constant rate of \$10/month (\$120/year).

- (a) Set up the initial value problem describing the situation.
- (b) Solve the initial value problem of part (a).
- (c) Find the time T it will take to pay off the debt.

4) Consider the following differential equation:  $3\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 4y = g(t)$ with  $g(t) = 1 - u_{\pi}(t) = \begin{cases} 1 \text{ when } 0 \le t < \pi \\ 0 \text{ when } t \ge \pi \end{cases}$ and  $u_{\pi}(t) = \begin{cases} 0 \text{ when } 0 \le t < \pi \\ 1 \text{ when } t \ge \pi \end{cases}$ 

Assume the initial conditions: y(0) = c and  $\frac{dy(0)}{dt} = 0$ 

Task: find y(t)

Hint: Make use of the 2 following Laplace transformations (L=Laplace transform)

| $f(t) = L^{-1}{F(s)}$ | $F(s) = L\{f(t)\}$               |
|-----------------------|----------------------------------|
| $e^{at}sin(bt)$       | $rac{b}{(s-a)^2+b^2}$ , $s>a$   |
| $e^{at}cos(bt)$       | $\frac{s-a}{(s-a)^2+b^2}  , s>a$ |