1. Given a linear space \mathbf{V} of symmetric 2×2 matrices with real coefficients and with a scalar product between two vectors X and Y in space \mathbf{V} defined by:

$$
(X, Y)=\operatorname{tr}\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right] X Y\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{T}\right)+\operatorname{tr}(X Y), \text { where } \operatorname{tr}(A) \text { is trace of the matrix }
$$

Find an othonormal basis of the space V .
Hint: You can start with one simple possible basis for \mathbf{V} consisting of linearly independent vectors \{a1, a2, a3\} given by:

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

2.

This questions consists of 3 parts a, b and c :
a) determine the general solution $y(x)$ of the differential equation

$$
4 y^{\prime \prime}+28 y^{\prime}+49 y=0
$$

using a strategy developed by d'Alembert.
b)show that the solutions that constitute the general solution of the ODE are linearly independent and therefore form a fundamental set of solutions.
c) determine the exact solution of the ODE for boundary conditions

$$
y(0)=2 \text { and } y^{\prime}(0)=2 / 3
$$

3.

Compute $3^{1 / 3}$ to 2 digits of accuracy using Newton's method with the initial value of 1 .
(1) Show how you obtain the numerical solution step by step.
(2) Write a Matlab (or Fortran or C) code to implement your numerical method.
4.
a) Find the regions in the $x y$ plane where the equation:

$$
y u_{x x}-2 u_{x y}+x u_{y y}=0
$$

is hyperbolic, elliptic, and parabolic. Sketch these regions in the $x y$ plane.
b) Using the Laplace transform, find an analytical solution to the wave equation,

$$
u_{t t}=c^{2} u_{x x}
$$

for $0<x<\infty$, with boundary and initial conditions given by,

$$
u(0, t)=f(t) \quad u(x, 0)=u_{t}(x, 0)=0
$$

Assume that $u(x, t) \rightarrow 0$ as $x \rightarrow+\infty$ and express your solution in terms of the function f and other relevant functions. You may use the Laplace transforms properties given below.

Function	Laplace Transform
$a f(t)+b g(t)$	$a F(s)+b G(s)$
$\frac{d f}{d t}$	$s F(s)-f(0)$
$\frac{d^{2} f}{d t^{2}}$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$
$e^{b t} f(t)$	$F(s-b)$
$\frac{f(t)}{t}$	$\int_{0}^{\infty} F\left(s^{\prime}\right) d s^{\prime}$
$t f(t)$	$-\frac{d F}{d s}$
$H(t-b) f(t-b)$	$e^{-b s} F(s)$
$f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right)$

* $H(\cdot)$ denotes the Heaviside function given by $H(x)=1$ for $x>0$ and $H(x)=0$ for $x<0$.

Hint: The general solution to an ODE of the form $\frac{d^{2} f}{d x^{2}}=a^{2} f$ is given by $f(x)=c_{1} e^{-a x}+c_{2} e^{a x}$ where c_{1} and c_{2} are constants.

