PhD Qualifying Examination in Acoustics

Two-hours, closed-book
Examinees are permitted a one page crib sheet Answer all parts of all three questions

1) Consider a baffled circular piston that radiates in water. The radius of the piston is $a=1 \mathrm{~m}$. The expression for the pressure radiated in the far field by a baffled circular piston at distance r from the piston is

$$
p(r, \theta, t)=\frac{j}{2} \rho_{0} c U_{0} \frac{a}{r} k a\left[\frac{2 J_{1}(k a \sin \theta)}{k a \sin \theta}\right] e^{j(\omega t-k r)},
$$

where J_{1} is the Bessel function of the $1^{\text {st }}$ kind, U_{0} is the velocity of the piston.
a) (4 points) Assume that the frequency is 100 Hz . Using the given expression for the pressure in the far field, prove that the radiation resistance is approximately given by

$$
R_{r} \approx \frac{1}{2} \rho_{0} c S(k a)^{2},
$$

where S is the area of the piston.
b) (3 points) The frequency is increased to 100 kHz . Find all angles at which the pressure amplitude in the far field is 0 .
c) (3 points) Assume that for a frequency of 3 kHz , the sound pressure level on axis at 1 km from the piston is 100 dB re $1 \mu \mathrm{~Pa}$. Determine the rms speed of the piston.
(c) Zeros: Bessel Functions of the First Kind, $J_{m}\left(j_{m n}\right)=0$

2) The Laplacian in cylindrical coordinates is given by

$$
\nabla^{2} p=\frac{\partial^{2} p}{\partial z^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial p}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

a) Show that the standard wave equation in cylindrical coordinates (with no Θ and z dependence) reduces to

$$
\frac{\partial^{2}(\sqrt{r} p)}{\partial r^{2}}-\frac{1}{c^{2}} \frac{\partial^{2}(\sqrt{r} p)}{\partial t^{2}}+\frac{\sqrt{r} p}{4 r^{2}}=0
$$

b) Show that for large values of the range variable r, the acoustic pressure is approximately given by

$$
p=\frac{f(t-r / c)}{\sqrt{r}}
$$

c) Find the reduction in sound pressure level corresponding to a doubling of distance, and contrast the result to the case of a spherical wave.
3) Consider a source a distance l away from a plane surface, as depicted below. The frequencyindependent reflection coefficient for the plane is

$$
R=|R| e^{j \varphi}
$$

The source produces a sound field

$$
p_{s}(r, t)=\frac{P}{r} e^{j(\omega t-k r)}
$$

a) Using the method of images, determine the rms pressure squared as a function of distance r along the perpendicular between the source and the plane, with r measured from the source, and assuming that the source is emitting a pure tone of frequency f_{c}. Recall

$$
p_{r m s}^{2}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}[p(t)]^{2} d t
$$

which reduces to a simple form when considering single harmonic signals.
b) Determine the rms pressure squared as above, but now assume that the source is emitting a broadband signal of bandwidth $B=f_{2}-f_{1}$ centered on f_{c}, with fixed amplitude P independent of frequency. Note that the image source is NOT incoherent in this case, and that the band-total power is obtained by integrating the pure-tone result from part a) across the band B.
c) Discuss the significance of the results of parts a and b, with particular attention to pure tone and broadband measurements approaching a reflecting plane.

