Acoustics Qualifying Exam Spring 2011 March 1,2011 Two Hours Closed Book Answer all three questions

- A piston is mounted so as to radiate on one side of an infinite baffle into air. The radius of the piston is *a*, and it is driven at a frequency such that λ = πa. Assume *a* = 0.1 m and the maximum displacement amplitude of the piston is 0.0002 m. The table below provides directivity and impedance functions for a piston.
 - a) How much acoustic power is radiated?
 - b) Recalling that $D = \frac{(ka)^2}{1 J_1(2ka)/ka}$ for a piston source, what is the directivity index of the radiated beam?

	Directivity Functions		Impedance Functions	
	$(x = ka \sin \theta)$		(x = 2ka)	
	Pressure	Intensity	Resistance	Resistance
	$\frac{2J_1(x)}{x}$	$\left(\frac{2J_1(x)}{x}\right)^2$	$R_{i}(x)$	$X_{i}(x)$
x		(
1.0	0.8801	0.7746	0.1199	0.3969
2.0	0.5767	0.3326	0.4233	0.6468
3.0	0.2260	0.0511	0.7740	0.6800
4.0	- 0.0330	0.0011	1.0330	0.5349
5.0	- 0.1310	0.0172	1.1310	0.3232
6.0	- 0.0922	0.0085	1.0922	0.1594

- 2. A spherically-expanding acoustic wave, $(\hat{A}/r)e^{i(kr-\alpha t)}$, with radian frequency $\omega = dk$ propagates away from the origin of coordinates (r = 0) in a fluid medium with density ρ and speed of sound c. This wave is incident on a thin spherical membrane centered on the origin. A fraction of the incident wave is reflected as a spherically-contracting wave $\hat{R}(\hat{A}/r)e^{i(-kr-\alpha t)}$, and a fraction is transmitted into an identical fluid medium outside the membrane as a spherically-expanding wave $\hat{\tau}(\hat{A}/r)e^{i(kr-\alpha t)}$. The incident sound wave causes the membrane to vibrate so that its radius is $a + \hat{\eta}e^{-i\omega t}$ where $|\hat{\eta}| << a$.
 - a) (10 pts) The first two boundary conditions on the membrane are:
 - *i*) Radial velocities must match at r = a: $(v_r)_{r=a^-} = (v_r)_{r=a^+}$, and
 - *ii*) Fluid and membrane motion must match at *r* = *a*;

$$(v_r)_{r=a^+} = (\mathcal{A}\mathcal{A})(a + \hat{\eta}e^{-i\alpha t})$$

Use these two boundary conditions to establish the following relationships:

$$(1-\hat{\tau})\left(1-\frac{1}{ika}\right)e^{ika} = \hat{R}\left(1+\frac{1}{ika}\right)e^{-ika}$$
, and $-i\omega\hat{\eta} = \frac{\hat{A}\hat{\tau}}{\rho c}\left(1-\frac{1}{ika}\right)\frac{e^{ika}}{a}$

b) (20 pts) For this spherical geometry, the following linearized dynamic boundary condition on the membrane can be obtained :

iii)
$$m_m \frac{\partial^2 (a + \hat{\eta} e^{-i\alpha t})}{\partial \alpha^2} = (p)_{r=a^-} - (p)_{r=a^+} - 2\frac{T}{a^2} \hat{\eta} e^{-i\alpha t}$$

where m_m is the mass per unit area of the membrane, p is the complex acoustic pressure, and T is the tension in the membrane when it has radius a. The tension T is assumed to large enough to be considered constant. Use this boundary condition and the results of part a) to determine:

$$\hat{\tau} = \frac{1}{1 - \frac{i\omega m_m}{2\rho c} \left(1 + \frac{1}{k^2 a^2}\right) \left(1 - \frac{1}{k^2 a^2} \frac{2(T/m_m)}{c^2}\right)}$$

c) (5 pts) With m_m and T non-zero, under what condition is the membrane acoustically transparent? Describe with words what is happening physically in this case.

- 3. A rigid wall pipe is filled with a fluid with sound c_o and density ρ_o . The fluid is flowing in the positive *x*-direction with a uniform velocity of v_o . The system can be considered to be one-dimensional.
 - a. (1 point) What is the linearized Euler equation for this system?
 - b. (1 point) What is the linearized continuity (mass conservation) equation?
 - c. (1 point) The equation of state for this system is given by $\frac{\partial p}{\partial t} + v_o \frac{\partial p}{\partial x} = c^2 \left(\frac{\partial p}{\partial t} + v_o \frac{\partial p}{\partial x} \right)$ Why does it depend on the flow velocity?
 - d. (5 points) Derive the wave equation for this system
 - e. (2 points) What is the phase velocity for this system