
Acoustics Ph.D. Qualifier Exam Spring Quarter 1997 - Page One

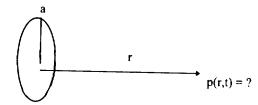
GEORGIA INSTITUTE OF TECHNOLOGY

The George W. Woodruff School of Mechanical Engineering

Ph.D. Qualifiers Exam - Spring Quarter 1997

Acoustics
EXAM AREA
Assigned Number (DO NOT SIGN YOUR NAME)

Please sign your <u>name</u> on the back of this page—


Please **print** your name here.

The Exam Committee will get a copy of this exam and will not be notified whose paper it is until it is graded.

Closed Books

Problem 1:

Derive an expression for the acoustic pressure, p(r,t), measured ON AXIS at a distance r in front of a circular piston of radius a in a rigid infinite baffle, when the piston velocity (normal component) is a transient v(t) which is uniform across the face of the piston. The medium is a fluid with density ρ and sound speed c.

Check your answer by looking at the limiting case of a very large. Does your answer make sense? Is your answer valid in the nearfield?

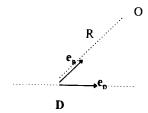
Hint: Note that, for any value of R, the following relation is exact.

$$\frac{\partial}{\partial t} \left[v(t - \frac{R}{c}) \right] = -c \frac{\partial}{\partial R} \left[v(t - \frac{R}{c}) \right]$$

Problem 2

A continuous sinusoidal plane wave $p_{inc}(\mathbf{r},t) = p_0 \cos(k_x x + k_y y - \omega x)$ is incident at an arbitrary angle on two orthogonal semi-infinite planes as shown above (note that k_x and k_y are negative real numbers.) The x-z plane is rigid and immovable $(v_n=0)$ and the y-z plane is pressure release (p=0).

- a. Find an expression for the acoustic pressure everywhere in the fluid. Describe graphically the nature of the solution.
- b. Could you obtain a similar solution if the y-z plane satisfied an impedance boundary condition? Could you obtain a similar solution if the planes were not orthogonal? Do not actually try to solve either of these problems just tell why you think they can or can't be solved.


Recall: $\exp(i\alpha) + \exp(-i\alpha) = 2\cos\alpha$; and $\exp(i\alpha) - \exp(-i\alpha) = 2i\sin\alpha$.

Problem 3

(a) Consider a dipole source radiating in transient mode, where the dipole moment $\mathbf{D}=\mathbf{D}$ $\mathbf{e}_{\mathbf{p}}$ is a function of time, i.e., $\mathbf{D}=\mathbf{D}(t)$. [The source strength of each monopole is $\mathbf{S}(t)$]. Show that the acoustic pressure at point O is

$$p(R,t) = \mathbf{e}_{R} \cdot (\frac{1}{R} + \frac{1}{c} \frac{\partial}{\partial t}) \frac{\mathbf{f}(t - R/c)}{R}$$

(b) Use the result in (a) to develop an expression for the transient radiation of sound from a vibrating surface with a surface pressure distribution, $p_s(t)$, and a surface normal velocity distribution, $v_{NS}(t)$.

