
PhD Qualifying Examination in Acoustics 

 

 

 

 
 

Closed-book 

Answer all parts of at least three questions



Problem #1 (This problem has four parts) 
a) Assume that the sound pressure level due to white noise (equal energy per unit frequency) in 
octave band B is L1.  Find an expression for the total level for N octave bands that include band 
B. Recall that the bandwidth of a given octave band is twice that of the next lowest band, that is 
BWB = 2xBWB-1, where B is the band number.  
 

 
b) Repeat part a), except assume pink noise (equal energy per octave band). 
 
 
c) An acoustic pressure signal is in the form of a periodic square wave, p=+A for a time interval 
T/2, then p=-A then for a time interval T/2, etc., where A is constant.  If the period T is 0.001 
seconds, and the amplitude A is 1 Pa, what is the sound pressure level of this signal, dB re 20 
Pa? 
 
 
d) An acoustic pressure signal is in the form of a periodic square wave, p=+A for a time interval 
T/2, then p=-A then for a time interval T/2, etc., where A is constant.  If the period T is 0.001 
seconds, and the amplitude A is 1 Pa, what would be the octave-band sound pressure level (dB re 
20 Pa) for the octave band centered at 1000 Hz? Recall that the lower and upper band limits for 

octave bands are related by 2  to the center frequency of the band (i.e.  / 2lower cf f , 

2upper cf f ). 

 



Problem #2 (This problem has four parts) 
A circular loudspeaker of diameter 12.5 cm is mounted in a rigid baffle and driven, in air, at a 
frequency of 6550 Hz. Assume the speed of sound is 343 m/s, and c= 400 Rayl. 
 
a) Find the Rayleigh distance 
 
b) How much acoustic power (mW) is radiated when the sound pressure level on axis is 93 dB at 
a distance of 1 m? 
 
b) Find the half-power beamwidth (in the farfield) 
 
d) Find the location of the most distant null on the axis 
 
Work these problems as far as you can; clearly state all assumptions or approximations, and if 
possible, validate your approximations. You will receive full credit if your final expression(s) 
merely lack numerical evaluation. 
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Problem #3 (This problem has two parts) 
1) In many applications of acoustics the ambient fluid is not motionless. The simplest extension 
of the motionless-ambient-fluid formulation of acoustics, involves ambient fluid motion at a 
constant velocity 


U  where 


U Ux

ˆ x Uy
ˆ y Uz

ˆ z  is a constant vector in both time and space.  

Under this assumption, demonstrate that the linearized acoustic wave equation in air for the 
pressure fluctuation p can be expressed as 
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 the	continuity	equation:		   0 u
t







	

 Euler's	ideal	flow	momentum	equation:	 	
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 the	constitutive	equation:	 2cpo   	
 
where  is the total density,u the total velocity of the fluid and o is reference density in 
absence of acoustic wave.  
 
Assume that 


U Ux

ˆ x Uy
ˆ y Uz

ˆ z  is a constant vector in both time and space. Also  Assume that 

the speed of sound, c,   ambient static pressure Po and reference density o  are independent of 
time and constant everywhere. 

[Hint. The gradient operator, 
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 in Cartesian coordinates, is merely a short 

hand notation for a vector derivative.  It follows all the usual rules for differentiation except that 
it also has a vector character, so the order of dot-products needs to be respected, for example: 
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2) Obtain the dispersion relationship between the wavenumber k and the frequency ω for a 
harmonic plane wave solution of Eq. (1) and propagating along the x direction only. Assume 

xUU x ˆ


. 

 



 

Problem #4 (This problem has three parts) 
A plane wave of frequency ω is normally incident on the boundary between two fluids of 
characteristic impedance r1 and r3 (Fig. a). The fluid densities of the fluids are ρ1 and ρ3. Assume 
that r3=0.01 r1. 
 

 
 

(1) For the configuration in Fig. a, calculate the pressure transmission coefficient, T, and the 
intensity transmission coefficient  TI (2points) 

 
(2) In order to increase the transmission of power at specific frequencies, a layer of thickness 

L is added between fluids 1 and 3 (Fig. b). This layer is made of a material of 
characteristic impedance r2 and density	 ρ2.	Write a system of equations that need to be 
solved in order to find the pressure reflection coefficient and the pressure transmission 
coefficient. Clearly write the unknowns in the equations; the other terms should be 
expressed as a function of the given parameters.  (3 points)	

	
(3) If we solve this system of equations from part 2, we obtain the following expression for 

the pressure reflection coefficient: 

  
 

If , calculate the intensity transmission coefficient TI.  Determine the value of r2 

that maximize the transmission of acoustic energy and the maximum value of TI. (5 
points) 

 
 


