Woodruff School of Mechanical Engineering
1.a) Briefly, discuss the main sources of error in finite difference approximations of PDE's.
2.b) Using only the grid points u_{i}, u_{i-1}, u_{i-2}, develop a finite difference formula for $\left.(d u / d x)\right|_{i}$ (the first derivative evaluated at grid point x_{i}) whose error is $O\left(\Delta x^{2}\right)$. You should use a Taylor series expansion about u_{i}.

Woodruff School of Mechanical Engineering
2. Calculate the following
(a)

$$
\operatorname{div}[f(r) \boldsymbol{r}]=\ldots
$$

(b)

$$
\operatorname{curl}[f(r) r]=\ldots
$$

(c) Using Stokes' theorem, evaluate the following integral over the closed surface S :

$$
\iint \operatorname{curl} \boldsymbol{b} \cdot d \boldsymbol{S}=\ldots
$$

Here, as customary:

$$
\begin{aligned}
& \operatorname{div}(\boldsymbol{v e c t o r}) \equiv \nabla \cdot(\text { vector }), \boldsymbol{c u r l}(\boldsymbol{v e c t o r}) \equiv \nabla \times(\text { vector }), \\
& \boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}: \text { position vector, } \\
& f(r): \text { arbitrary (smooth) function of } r, r^{2}=x^{2}+y^{2}+z^{2}, \\
& \boldsymbol{b}: \text { arbitrary (smooth) vector function, } \\
& d \boldsymbol{S}=\boldsymbol{n} d S: \text { vector area element, with outward unit normal } \boldsymbol{n} .
\end{aligned}
$$

3.a) Find three eigenvalues of the following matrix A, and the corresponding eigenvector matrix, M.

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 4 \\
0 & 0 & 5 \\
0 & 0 & 1
\end{array}\right]
$$

3.b) Explain why $A^{1001}=A . \quad$ Is $A^{1000}=I$?
3.c) Find the three diagonal entries of $e^{A t}$. Explain your derivation.
3.d) The matrix $A^{T} A$, for the same A, is

$$
A^{T} A=\left[\begin{array}{ccc}
1 & -2 & -4 \\
-2 & 4 & 8 \\
-4 & 8 & 42
\end{array}\right]
$$

How many eigenvalues of $A^{T} A$ are positive, zero, or negative? Do not calculate them, but explain your answer.

Woodruff School of Mechanical Engineering
4. A two-dimensional channel with a fixed upper surface and a movable lower surface contains an incompressible fluid initially at rest. At time $t=0$, the bottom surface is impulsively given a velocity U_{0} in the x-direction as shown in the figure below.

The resulting transient parallel flow in the x-direction is governed by the following dimensionless partial differential equation.

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial z^{2}}, \quad u(0, t)=1, \quad u(1, t)=0, \quad u(z, 0)=0 .
$$

Determine the transient velocity $u(z, t)$ of the fluid. How would you use this solution to estimate the time it takes for the flow to reach steady state?

