Instructions

Please complete all 4 problems attached.

Problem 1: Vector Calculus

Show that

$$
\begin{equation*}
\int d \boldsymbol{r} \times \boldsymbol{q}=\iint(d \boldsymbol{S} \times \nabla) \times \boldsymbol{q} \tag{1}
\end{equation*}
$$

where
\boldsymbol{q} : arbitrary ("well behaved") vector field, the integral \int is taken over the closed curve C [\boldsymbol{r} : position vector defining C and $d \boldsymbol{r}$: elementary displacement along C (tangent to it)]
\iint is taken over the open surface S whose boundary is C, i.e. $\partial S=C$ and $d \boldsymbol{S}=\boldsymbol{n} d S$: vector element of area $d \boldsymbol{S}=\boldsymbol{n} d S$ of \boldsymbol{S}, with outward unit normal vector \boldsymbol{n}, and
$\nabla \ldots \equiv \boldsymbol{i} \partial \ldots / \partial x+\boldsymbol{j} \partial \ldots / \partial y+\boldsymbol{k} \partial \ldots / \partial z$ is a symbolic operator in rectangular Cartesian coordinates with orthonormal basis $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$

Hints: Use the following identities, for any three vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ (including ∇),
$\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=\boldsymbol{b} \cdot(\boldsymbol{c} \times \boldsymbol{a})=\boldsymbol{c} \cdot(\boldsymbol{a} \times \boldsymbol{b}) ; \quad \boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{c} \cdot \boldsymbol{a}) \boldsymbol{b}-(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}$
hence, if $\boldsymbol{c}=$ constant,
$\nabla \times(\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{c} \cdot \nabla) \boldsymbol{b}-\boldsymbol{c}(\nabla \cdot \boldsymbol{b})$

Problem 2: Linear algebra

a) Show that the equation

$$
\begin{equation*}
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F z x=1 \tag{1}
\end{equation*}
$$

can be written into the following matrix form by determining $[\mathbf{M}]$:

$$
\left.\mathbf{X}^{\mathrm{T}} \mathbf{M}\right] \mathbf{X}=1 \text { where } \mathbf{X}=\left[\begin{array}{lll}
x & y & z \tag{2}
\end{array}\right]^{\mathrm{T}}
$$

b) For $A=\frac{3}{2}, B=2, C=\frac{5}{2}, D=-\frac{\sqrt{6}}{3}, E=-\sqrt{2}, F=-\frac{\sqrt{3}}{3}$, find a suitable coordinate transformation $[\mathrm{T}]$ such that Eq. (1) can be rewritten as

$$
\begin{equation*}
A^{\prime} x^{\prime 2}+B^{\prime} y^{\prime 2}+C^{\prime} z^{\prime 2}=1 \tag{3}
\end{equation*}
$$

Determine the transformation matrix and the values of A^{\prime}, B^{\prime} and C^{\prime}.
c) Under what condition do Eq. (3) and hence Eq. (1) describe an ellipsoid in a three dimensional space?

Problem 3. Partial differential equation

The governing equation for the vibration of a string of length l (stretched along the x-axis) is given by
$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
where c is the wave speed.
The boundary conditions are : $u(0, t)=0$ and $u(l, t)=0$
Suppose the string is put into an initial static configuration described by $u(x, 0)=f(x)$ where $f(x)$ is some specified function.

At $t=0$ the string is released.
Determine the resulting motion of the string.

Problem 4: Numerical Analysis

1) Find the root(s), if it/they exist, of $x=\frac{\sin x}{x}$ within 10^{-3} using Newton-Raphson's method. Discuss the error associated with Newton-Raphson's root-finding method and, in particular, explain what is meant by "quadratic convergence".
2) Gauss-Seidel's method to find the root of $f(x)=0$ consists in writing $f(x)=x-g(x)=0$. Choose the same initial guess for x as for 1) and proceed iteratively toward the root. Compare the rates of convergence between the Newton-Raphson's method and Gauss-Seidel's method.
3) Consider now the system of equations

$$
u(x, y)=0 \text { and } v(x, y)=0
$$

where u and v are two known functions (continuous and differentiable). Using 2D-Taylor series expansions for u and v around $\left(x_{i}, y_{i}\right)$, derive an expression for an iterative numerical scheme that gives:
x_{i+1} in terms of x_{i}, u_{i}, v_{i}, and the derivatives, $\left(\frac{\partial u}{\partial x}\right),\left(\frac{\partial u}{\partial y}\right),\left(\frac{\partial v}{\partial x}\right),\left(\frac{\partial v}{\partial y}\right)$ and
y_{i+1} in terms of y_{i}, u_{i}, v_{i}, and the derivatives $\left(\frac{\partial u}{\partial x}\right),\left(\frac{\partial u}{\partial y}\right),\left(\frac{\partial v}{\partial x}\right),\left(\frac{\partial v}{\partial y}\right)$.
Discuss how it relates to the standard Newton-Raphson method discussed in 1).

