(1) Solve the initial value problem:

$$
\begin{aligned}
& \frac{d x}{d t}=2 x-6 y, x(0)=2 \\
& \frac{d y}{d t}=x+7 y, y(0)=1
\end{aligned}
$$

(2) Consider the following function:

$$
f(x)=\frac{\pi-x}{2}
$$

Express $f(x)$ as a Fourier series $S(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\lambda_{n} x\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\lambda_{n} x\right)$ on the interval $(0,2 \pi)$ and answer the following questions:

1. What is the value of the Fourier coefficient a_{0} ?
2. What are the values of the Fourier coefficients $a_{n}, \quad n=1,2,3 \ldots$?
3. What are the values of the Fourier coefficients $b_{n}, \quad n=1,2,3 \ldots$?
4. Does the Fourier series expansion $S(x)$ correctly predicts $f(x)$ at $x=0$?
5. Does the Fourier series expansion $S(x)$ correctly predicts $f(x)$ at $x=\pi$?
6. Does the Fourier series expansion $S(x)$ correctly predicts $f(x)$ at $x=2 \pi$?
7. Draw on the same schematic $f(x)$ and $S(x)$ for $-\infty<x<\infty$?
(3) A matrix can be used to carry out a linear transformation, which is very useful in many engineering problems. Consider $A x=y$. Here A is a square matrix and x and y are vectors. Their dimensions are such that this equation makes sense. We can interpret this equation as A maps x to y. The characteristics of the mapping are all contained in A. Therefore it is possible that by investigating them, one is able to determine A.

Consider a circle $x_{1}^{2}+x_{2}^{2}=1$.
(a) Design a matrix A such that the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ on the circle is mapped to $\left(\frac{10}{\sqrt{2}}, \frac{10}{\sqrt{2}}\right)$ and the point $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is mapped to $\left(-\frac{2}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$.
(b) Suppose this matrix is used to map all points on the circle. What is the result (show the mathematical representation and a simple sketch)?
(c) Suppose we wish to design another matrix B so that the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ on the circle is mapped to $\left(\frac{10}{\sqrt{2}}, \frac{10}{\sqrt{2}}\right)$ and the point $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is mapped to $(0,0)$. If this matrix is used to map all points on the circle, what is the result (show the mathematical representation and a simple sketch)?
(d) How many points on the circle are mapped to the single position $(0,0)$?
(4) A section S of the plane $x+y+\sqrt{2} z=4$ forms the inclined surface of the tetrahedron shown to the right. The volume flux Q of a vector field \underline{v} through the surface S is given by $Q=\int_{S} v \cdot \underline{n} d S$, where \underline{n} is an outward-pointing unit normal vector to the surface S. For the vector field $\underline{v}=x \underline{i}+y \underline{j}+z \underline{k}$, determine Q two different ways: a) directly from the surface integral for the flux, and b) using the divergence theorem.

