## Instructions

Please complete all 4 problems attached.

## Problem 1

The surface of a toroid is given by the parameterization:

$$
\begin{aligned}
& x=(a+b \cos t) \cos s \\
& y=(a+b \cos t) \sin s \\
& z=b \sin t
\end{aligned}
$$

for $0 \leq s \leq 2 \pi$ and $0 \leq t \leq 2 \pi$. Recall that the surface area is given by the formula:

$$
A=\iint_{S}\left\|\mathbf{T}_{s} \times \mathbf{T}_{t}\right\| d s d t
$$

where $\mathbf{T}_{s}$ and $\mathbf{T}_{s}$ are the tangent vectors with respect to the parameterized coordinates $s$ and $t$. What is the surface area of a toroid where $a=2$ and $b=3$ ?

## Problem 2

Let $\mathbf{N}$ be an arbitrary $\mathrm{n} \times \mathrm{n}$, say, real, anti-symmetric (or skew-symmetric) matrix. Are the following two (2) matrices

$$
A \equiv(\mathbf{1}+\mathbf{N})^{-1}(\mathbf{1}-\mathbf{N})
$$

and

$$
\begin{equation*}
\mathbf{B} \equiv(\mathbf{1}+\mathbf{N})(\mathbf{1}-\mathbf{N})^{-1} \tag{a}
\end{equation*}
$$

orthogonal ? How about the matrices:
and

$$
\mathbf{C} \equiv(\mathbf{1}-\mathbf{N})^{-1}(\mathbf{1}+\mathbf{N})
$$

$$
\begin{equation*}
\mathbf{D} \equiv(\mathbf{1}-\mathbf{N})(\mathbf{1}+\mathbf{N})^{-1} \tag{b}
\end{equation*}
$$

i.e. are they orthogonal ? Proof required, no guesses or "hand-waving" arguments.

Remarks: Here, the following notations are employed: $1=\mathrm{n} \times \mathrm{n}$ unit (diagonal) matrix;
$\mathbf{M}^{\mathrm{T}}$ is the transpose of (an arbitrary matrix) $\mathbf{M}$,
and $\quad \mathbf{M}^{-1}$ is the inverse of $\mathbf{M}$.

Further, it can be shown that $(\mathbf{1}+\mathbf{N})$ is never singular, i.e. you can assume that $(\mathbf{1}+\mathbf{N})^{-1}$ always exists.

## Problem 3

It is known that the potential $u(x, y)$ inside a rectangle with corners at the points $(0,0),(\mathrm{a}, 0)$, $(0, b)$ and $(a, b)$ satisfies the two dimensional Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

If the potential on the boundary of the rectangle is given as

$$
\begin{aligned}
& u(x, 0)=x, a>x \geq 0, \\
& u(x, b)=0, a \geq x \geq 0, \\
& u(0, y)=0, \quad b \geq y \geq 0, \\
& u(a, y)=0, b \geq y \geq 0
\end{aligned}
$$

Find the potential distribution inside the rectangle.

## Problem 4

The curve $y=\cos ^{2}(x)$ is plotted on the graph below. Find the slope of the straight line that goes through the origin and is tangent to the $\cos ^{2}(x)$ curve near the second peak as shown in the plot.


