Instructions

Please complete **4** of the 5 problems attached.

Indicate below which problem to **omit** from grading by striking out the appropriate problem number:

Problem #1

Problem #2

Problem #3

Problem #4

Problem #5

Consider the matrix

$$\mathbf{T} = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

1. Find its principal values (eigen-values), λ_1 , λ_2 , λ_3 and associated normalized principal directions \mathbf{n}_1 , \mathbf{n}_2 , \mathbf{n}_3 , $\mathbf{n}_1 \cdot \mathbf{n}_1 = 1$, $\mathbf{n}_2 \cdot \mathbf{n}_2 = 1$, $\mathbf{n}_3 \cdot \mathbf{n}_3 = 1$

2. Do the same for the matrix \mathbf{T}^2 (i.e., squared), i.e., find $\Lambda_1, \Lambda_2, \Lambda_3$ and $\mathbf{N}_1, \mathbf{N}_2, \mathbf{N}_3, \mathbf{N}_1 \cdot \mathbf{N}_1 = 1, \mathbf{N}_2 \cdot \mathbf{N}_2 = 1, \mathbf{N}_3 \cdot \mathbf{N}_3 = 1$

Consider the vector field $\vec{f}(x, y, z) = x\vec{i} + xz\vec{j} + xy\vec{k}$ in $||R||^3$.

- a) Determine if the vector field has a potential.
- b) Evaluate $\iint_{\Sigma} \vec{f} \cdot d\sigma$, where Σ is the unit sphere $x^2 + y^2 + z^2 = 1$.
- c) Evaluate the divergence of the gradient of $\|\vec{f}\|^2$.
- d) Consider now the (*x*,*y*) plane in $||R||^2$. Evaluate $\int_C (x^2 + y^2) dx + 2xy dy$ where C is the path in straight line from (0,0) to (0,2) to (1,2).

$$\frac{d^{3}x}{dt^{3}} + (1+p)\frac{d^{2}x}{dt^{2}} + (p+q)\frac{dx}{dt} + qx = f(t)$$

- (1) Under what conditions is this equation called a linear time-invariant (LTI) homogeneous ordinary differential equation (ODE)? What is the order of this ODE?
- (2) What is the characteristic equation? Find the general solution for the homogeneous ODE and discuss the effect of *p* and *q* on the characteristic roots and the form of time response x(t). (Hint: It is already known that e^{-x} is one of the solutions for the homogeneous equation.)
- (3) Briefly list the steps about how you will find the solution for the non-homogeneous equation with zero initial conditions.
- (4) Under what condition the final value theorem could not be applied to find $x(t \rightarrow \infty)$.

(a) Solve the Heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$

for u(x,t) defined within the domain of $0 \le x \le 1$ and t > 0, given the following boundary conditions

(i) $u_x(0,t) = 0$ (note: $u_x = \frac{\partial u}{\partial x}$) (ii) u(1, t) = 0(iii) u(x,0) = F(x), where $F(x) = 2\cos(0.5 \pi x) + \cos(3.5 \pi x)$.

(b) What is the equilibrium solution for the system in (a)? Does your solution in (a) approach the equilibrium solution at large t?

(c) At x = 1, temperature is fixed but heat flux is allowed to change. Based on your solution in (a), calculate the heat flux, $\phi = -\frac{\partial u}{\partial x}$ at x = 1 as a function of *t*.

Consider a general problem where x = f(x) and the specific example of this problem

- $x = -x^3 + 1$
 - a) Set up the solution for x to be solved using the Regula Falsi also called the False Position method.
 - b) An alternative numerical method is the Newton-Raphson algorithm. Set up the solution using Newton-Raphson.
 - c) Step through both algorithms for at least four iterations to complete the table below through i = 5

	Regula Falsi			Newton-Raphson		
Ι	X_i	X_{i+1}	$f(x_{i+1}) - x_{i+1}$	<i>x</i> _{<i>i</i>}	x_{i+1}	$f(x_{i+1}) - x_{i+1}$
1	0	10		0		
2						
3						
4						
5						

- d) Compare the two methods for arbitrary f(x) in terms of
 - 1) Certainty of convergence
 - 2) Applicability
 - 3) Necessary initial information
- e) Sketch an example f(x) for which one of the two methods will not converge to a solution.