
(1) Please solve the following equation: 
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(2) Consider the following equation 
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This equation represents an ellipse on the 1 2( , )x x  plane, with the origin as its center. 

[a] Find the points on the ellipse which are the farthest and closest from the origin of the plane. 

[b] Design an ellipse, with the origin as the center, whose farthest points from the origin are the 
same as the closest points in [a]. Represent this ellipse in terms of 1 2( , )x x . 

(Hint: consider the geometric interpretation of the eigenvalues of a matrix) 

 



(3)  Let ( )f x x=  be defined on [ , ]π π− .  Its Fourier series may be written as 
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(a) Find all the coefficients ,  and . 0a na nb

(b) For very large N, investigate the behavior of the least square error  
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Hint: you may need to know that for very large N  
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(4)  A temperature sensor travels on a helical path through a temperature field T(x, y, z).  The 
helical path is given by the position vector  
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where t is time.  The temperature recorded by the sensor varies with the arclength s of the helix 
as , where T0 sin( )T T T s= + Δ 0 and ΔT are constants.   

a) Determine the vector velocity of the sensor. 

b) Determine the material derivative of the temperature following the sensor. 

c) If 0T k∇ × = , find the functional form of T(x, y, z).  

   d)   What is the wavelength of the temperature variation in the z-direction? 


