(1) Please solve the following equation:

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+3 x=65 \sin (\omega t)
$$

Given $\omega=2$ and

$$
\text { at } t=0: x=0 ; \frac{d x}{d t}=2
$$

(2) Consider the following equation

$$
\mathbf{x}^{T} \mathbf{A x}=128
$$

where

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { and } \mathbf{A}=\left[\begin{array}{cc}
17 & -15 \\
-15 & 17
\end{array}\right]
$$

This equation represents an ellipse on the (x_{1}, x_{2}) plane, with the origin as its center.
[a] Find the points on the ellipse which are the farthest and closest from the origin of the plane.
[b] Design an ellipse, with the origin as the center, whose farthest points from the origin are the same as the closest points in [a]. Represent this ellipse in terms of (x_{1}, x_{2}).
(Hint: consider the geometric interpretation of the eigenvalues of a matrix)
(3) Let $f(x)=|x|$ be defined on $[-\pi, \pi]$. Its Fourier series may be written as

$$
f(x)=\lim _{N \rightarrow \infty} f_{N}(x)
$$

where

$$
f_{N}(x)=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

(a) Find all the coefficients a_{0}, a_{n} and b_{n}.
(b) For very large N, investigate the behavior of the least square error

$$
\sigma_{N}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[f(x)-f_{N}(x)\right]^{2} d x
$$

Hint: you may need to know that for very large N

$$
\sum_{n=2 N+1}^{\infty} \frac{1}{(2 n-1)^{4}} \approx \int_{N}^{\infty} \frac{d x}{(2 x-1)^{4}}
$$

(4) A temperature sensor travels on a helical path through a temperature field $T(x, y, z)$. The helical path is given by the position vector

$$
\underline{R}(t)=x(t) \underline{i}+y(t) \underline{j}+z(t) \underline{k}=\cos (t) \underline{i}+\sin (t) \underline{j}+\frac{\sqrt{15}}{7} t \underline{k}, \quad t \geq 0,
$$

where t is time. The temperature recorded by the sensor varies with the arclength s of the helix as $T=T_{0}+\Delta T \sin (s)$, where T_{0} and ΔT are constants.
a) Determine the vector velocity of the sensor.
b) Determine the material derivative of the temperature following the sensor.
c) If $\nabla T \times \underline{k}=0$, find the functional form of $T(x, y, z)$.
d) What is the wavelength of the temperature variation in the z-direction?

