SDC PhD Qualifying Exam Fall 2013

Work all 4 problems

1.

The figure shows a typical schematic of a DC motor where it is assumed that $v_g = K_g \omega$ and $t_m = K_m i_a$. It is desired to control the motor speed while under load.

- a) Draw the block diagram including labels on the connections.
- b) Determine the relevant linear transfer equation without making any further simplifying assumptions.
- c) Consider the no load case. Apply the usual simplification and determine a first order transfer equation model.
- d) For c) assume that additionally b = 0. Explain whether the system is stable.

- v_a applied voltage
- v_g generator voltage (back EMF)
- i_a armature current
- ω armature speed
- t_m motor torque
- t_l load torque
- R_a armature resistance
- L_a armature inductance
- J armature inertia
- *b* armature damping
- K_m motor constant
- K_g generator constant

a) A unity feedback system has $KG = K(s+2)/(s-1)^2$. Determine the values of K > 0 so the closed-loop response is i) Overdamped. ii) Underdamped.

2.

3.

For the transfer function $G = \frac{s+1}{100} / \frac{s(s+1)}{100}^2$ approximate the following:

a) Graphs of the magnitude and phase plots (use graphs below)

- b) ω_{PC} the phase crossover frequency
- c) PM the phase margin
- d) ω_{GC} the gain crossover frequency
- e) db_{GM} the gain margin

The following properties are known about a transfer function F(s):.

Property 1: The final value of the unit impulse response of F(s) is 1. Property 2: F(s) has two poles and one of them is at -2. F(s) has one zero. Property 3: The unity feedback of F(s) is stable and critically damped.

(a) Determine F(s).

(b) Plot the unit step response of F(s) obtained in (a) versus time. A general sketch without using a calculator is acceptable. You can use the Laplace transformation table given below.

f(t)	F(s)
Unit impulse $\delta(t)$	1
Unit step 1(t)	$\frac{1}{s}$
ź	$\frac{1}{s^2}$
$e^{-\alpha t}$	$\frac{1}{s+a}$
te ^{-al}	$\frac{1}{(s+a)^2}$

4.