Dynamics Systems \& Control Ph.D. Qualifying Exam Spring 2019

Instructions:

Please work 3 of the 4 problems on this exam. It is important that you clearly mark which three problems you wish to have graded. For the 3 problems that you select, show all your work in order to receive proper credit. You are allowed to use a scientific, non-graphing calculator. Be sure to budget your time; concentrate on setting up the problem solution first and leave algebra until the end. When necessary, you may leave your answers in terms of unevaluated numerical expressions. Good Luck!

Problem 1: Consider the mechanical system shown below and answer the questions.

There is a massless arm attached to a pulley that is fixed to the ground. A cable attaches the pulley to an actuator. There is tension T in the cable. The pulley is massless, fixed to the ground and has center location O and radius R. The arm is massless but has an attached mass, M , which is placed in a position at length $\mathrm{n} * \mathrm{~L}(\mathrm{n}=1,2,3 .$.$) from the$ center of the pulley. Gravity acts. θ is the counterclockwise + angle of the arm from vertical.

1) Obtain the transfer function from input tension T to output angular displacement θ or $P(s)=\frac{\theta(s)}{T(s)}$. Assume θ is small. Assume moment of inertia of the mass, M about point O is $\mathrm{M}(\mathrm{nL})^{2}$.
2) Discuss the stability of $P(s)$. (1 sentence is OK)
3) Assume that the cable tension T is provided by an actuator according to:

$$
\mathrm{T}=\mathrm{K}\left(\mathrm{x}-\mathrm{x}_{0}\right)+\mathrm{B}(\mathrm{dx} / \mathrm{dt})+\mathrm{T}_{\mathrm{c}}
$$

with x_{0} defined as the length of the cable when the arm is at top dead center i.e. $\theta=0$ and x is the amount of cable unfurled from rest. T_{c} is a commanded tension.

Obtain a new transfer function from input tension T_{c} to output angular displacement θ or $G(s)=\frac{\theta(s)}{T c(s)}$. Assume θ is small.
4) Discuss the stability of $G(s)$ (1 sentence is OK).
5) Assume M, R, K, B and $L=1$. Use the result in 4) and sketch the unit step response of the system output θ versus time for $\mathrm{n}=1,2,3$. Note: A general sketch is acceptable where complete mathematical derivations using the inverse Laplace transformation are NOT required. However you should a) determine the final value of the output, and b) provide sufficient discussion or justification about whether the response exhibits an overshoot or not.
6) Solve for the value of n (i.e. the position of the mass along the arm) where it will be critically damped.

Problem 2: Consider the mechanical system shown in the figure. Displacements $x_{1}(t)$ and $x_{2}(t)$ denote the positions of mass 1 and 2. A sinusoidal input force $p(t)$ is exerted on mass m_{1}. Assume that the viscous damping coefficients b_{1} and b_{2} are positive. but negligibly small. [Hint: this means that, in obtaining equations, we may assume that $b_{1}=0$ and $b_{2}=0$. Since b_{1} and b_{2} are positive, however small, the system is stable and the following equation can be used to find the steady-state solution.]

where $X=|G(j \omega)| P$ and $\phi=\angle G(j \omega) . G(j \omega)$ is the sinusoidal transfer function with input P and output X. The displacements x_{1} and x_{2} are measured from the respective equilibrium positions in the absence of the excitation force. Assume that the ground is frictionless.

1) Derive the transfer function $X_{2}(s) / X_{1}(s)$ and $X_{1}(s) / P(s)$.
2) Find the steady-state displacements $x_{1}(t)$ and $x_{2}(t)$.
3) Determine whether the masses m_{1} and m_{2} move in the same or opposite direction. Please explain briefly. (Hint: judge the relationship between ω and $\sqrt{k_{2} / m_{2}}$ values)

Problem 3: Consider the feedback control system below:

1) Show that the characteristic equation for root locus analyses can be written as

$$
1+K G(s)=0 \text { where } G(s)=\frac{s}{(s+a)\left(s^{2}+b\right)}
$$

Determine the values of " a " and " b " and " K " in terms of k_{t}.
2) Sketch the root locus; specifically calculate the asymptotes (centroid and angles) and the departure angle at the complex root $s=j \sqrt{b}$.
3) An engineer claims that when $K=3$, the dominant closed-loop poles are located at $s=$ $-0.42 \pm j 2$; and the effect of the third pole on the transient response is negligible. Justify his claim by determining the third pole. Obtain an approximate second-order system for the closed-loop system; be sure that both the reduced and original models yield the same steady-state value.

Problem 4: The magnitude plot of the frequency response depicted in the following figure refers to the open-loop system of a unity-feedback control system.

1) For $A=10$, find the open-loop transfer function $G(s)$ of the system
2) Write down the magnitude and phase equations with respect to the frequency, and roughly sketch the Bode diagram to determine the gain K value for the phase margin 45 deg.
3) Find the closed-loop transfer function $\mathrm{F}(\mathrm{s})$ of the system and compute the values of the damping ratio and natural frequency.

