PLEASE NOTE: Answer 3 out of the 4 problems. In case you answer the 4 problems, clearly state which 3 problems you want to be graded.

Problem #1

Two steel columns and one aluminum column are welded to two rigid plates, as shown in Figure 1. The three columns have the same initial length of 0.5 m and the same cross-sectional area of 40 mm². The steel is purely elastic with an elastic modulus of 200 GPa, and the aluminum is elastic-perfectly plastic with an elastic modulus of 70 GPa and a yield strength of 140 MPa. The structure is initially stress-free. The bottom plate is held fixed, and the top plate is subjected to a compressive load of *F* resulting in a vertical displacement of *u*. For each of the following cases, determine the function of F(u) and the final stress states in the columns.

- (a) F is increased to 20 kN, and then decreased to zero;
- (b) F is increased to 50 kN, and then decreased to zero;
- (c) F is increased to 100 kN, and then decreased to zero.

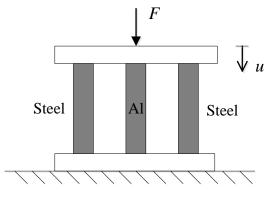
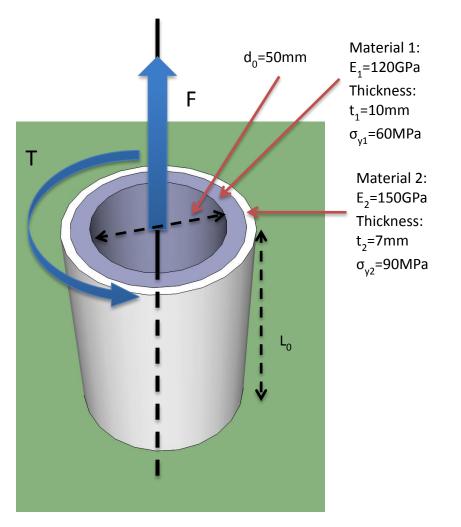



Figure 1

Problem #2

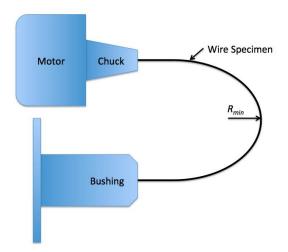
Consider the following thin walled tube simultaneously subjected to a tensile force F and a torque T. The two materials have an elastic perfect plastic behavior. All necessary information is given in the picture below:

- 1. Consider a first case in which the applied torque T is null. L is the instantaneous length of the tube. Construct, from a mechanical reasoning, a plot showing the evolutions of the applied Force with L (i.e. F as a function of L). Indicate and mathematically quantify the all key points on the graphics (i.e slopes, points where the slope changes).
- 2. Consider now a second case where T and F are non null. Show in a matrix form the components of stress which are non null. Express the relationship between the stresses in each material and the applied torque and force.
- 3. Using Tresca's yield criterion for both materials, construct a diagram for each material relating the maximum allowable torque to the maximum allowable force (i.e. T,F diagram). Indicate the expression of the points of intersections with the X and Y axis.
- 4. Where is the system more likely to yield plastically?

Problem #3

In a drop-weight test, a 1 in. diameter spherical ball weighting 0.15 lb is dropped freely on 0.120 in. thick $[0/\pm 45/90]_s$ carbon fiber-epoxy beam specimens and the rebound heights are recorded. The beam specimens are simply supported, 0.5 in. wide and 6 in. long between the supports. The modulus of the laminate is 20 x 10⁶ psi. The drop heights, rebound heights, and specimen deflections in three experiments are as follows:

Drop	Rebound Height	Measured Maximum
Height (ft)	(ft)	Deflection (in)
1	0.72	0.056
4	2.2	0.138
6	3.02	0.15


- a) Calculate the energy lost by the ball in each case
- b) Calculate the maximum deflection of the beam in each case. Clearly list your assumptions
- c) Compare the measured maximum deflection with what you calculated in b). Is there a difference, yes? No? Explain why.
- d) How your answer in c) will change if the laminate is replaced with an isotropic material of the same modulus?

Problem #4

A new test method for fatigue testing of wires has been developed. It consists of a wire specimen that is bent 180° and is attached in a chuck connected to a motor on one end and in a bushing that freely rotates on the other end. As a result, the wire rotates along its long axis.

(a) Given the angular speed of the motor in terms of revolutions per minute (rpm), *n*, the wire diameter, *d*, the minimum radius of the bent wire, R_{min} , shown in the schematic, and the time to failure t_f (in minutes) for the test, please derive formulas for stress amplitude, σ_a , and cycles to failure, N_f , so a data point on the stress-life curve can be plotted for each wire tested. Assume the wire material is isotropic with elastic properties, *E* and *v*.

(b) Can this approach be used to evaluate mean stress effects in the fatigue of wires? Please explain.

