
1.  The control gate ACB is pinned at A and rests on the smooth surface B. If the 

counterweight C is 2000 lb, determine the maximum depth of water h in the reservoir 

before the gate begins to open. The gate has a width of 3 ft and has negligible mass 

compared to the counterweight.  

 

 

 

 

 

  



2.  The aortic arch can be considered as a curved tube with pulsatile flow.  Some 

dimensional variables are the diameter of the tube, D, the length of the tube L, the radius 

of curvature, r, the pulsatile frequency, f, the dynamic viscosity of blood, , the density of 

the blood, , mean velocity in the tube, V, and the time of the experiment, T.   

a) Derive four independent non-dimensional parameters that would apply to this fluid 

dynamic situation. Choose the parameters for relevance to the dynamic behavior of 

the flow. Optional: Do you know the common names of these non-dimensional 

numbers? 

b) It is sometimes useful to model a flow situation in a laboratory with another fluid, 

such as water. Assuming we keep the dimensions of the model the same as the true 

aorta, if the kinematic viscosity of water is ¼ the kinematic viscosity of whole blood, 

what should be the mean velocity of water in the experiment to simulate the fluid 

dynamics?  

c) It is common for hemodynamicists to use an alternate form of a non-dimensional 

parameter called the Womersley number for pulsatile flows in tubes:  

Wo = R (2f/), where R is the tube radius and 2f is the angular frequency. Can 

you combine some of the parameters you chose in Part a to derive the Womersley 

number? What is the interpretation of force balance for the Womersley number? 

d) We would like to simulate the pulsatile nature of blood, but use water instead. What 

should the frequency of pulsatility be for the water model, using dimensional 

similarity? 

e) If we are to quantify the shear stress of the fluid on the aortic wall, is any conversion 

necessary from the laboratory measurements to the true aorta? 

 

 

  



3.  Consider steady, incompressible, viscous flow above a flat plate of length L with 

surface mass removal, which is referred to as suction. The velocity above the plate is 

given by 𝑢(𝑥, 𝑦) = 𝑈∞𝑓 (
𝑦

𝛿
) where 𝑈∞is the constant freestream velocity and 𝛿(𝑥) is the 

thickness of the viscous region. Pressure is constant and equal to 𝑝∞ and you can assume 

that 𝑢 = 𝑈∞for y ≥ δ. The surface velocity is given by 𝐮 = −𝐶𝑄𝑈∞𝐣, where 𝐶𝑄 is the 

constant suction coefficient. Show that, with ρ denoting fluid density and  𝑚̇ = 𝜌𝑈∞𝐶𝑄𝐿 , 

the drag force per unit width out of the page is 

𝐹𝐷 = 𝑚̇𝑈∞ + ∫ 𝜌(𝑈∞ − 𝑢) 𝑢 𝑑𝑦
𝛿

0

 

 
You can use the stationary rectangular control volume shown in the figure for analysis.  

  



4.  A pointing down cone with the outer radius R is located a small distance above a 

conical cavity in the substrate. The cone and the cavity are concentric and have an equal 

half-angle of . The cone rotates at a constant angular speed . The gap between the 

cone and the cavity has a constant vertical (z) dimension of h, and is completely filled 

with a Newtonian fluid of constant density  and constant viscosity . Assume that the 

flow is steady, unidirectional, laminar, and ℎ ≪ 𝑅.   

 

 

 

a) What are the no-slip boundary conditions on the velocity field V  for the flow in the 

gap between the cone and the cavity?  

b) List all additional assumptions (beyond those given in the problem statement), and 

simplify the relevant governing equations.  In words, what drives this flow? 

c) Determine the velocity field V .  Note that you are not required to solve the governing 

equations.  Hint:  use the boundary condition at the cavity surface to “guess” the form 

of the velocity field that ensures that this no-slip condition is automatically satisfied.   

d) Determine the shear stresses for this flow. 

e) What are V  and the shear stresses for this flow in the limit where / 2→  ? 

 

 

 

 

 

 



For your reference, the Navier-Stokes equations in cylindrical polar coordinates are: 
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The shear stresses for a Newtonian fluid in cylindrical polar coordinates are: 
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