Georgia Institute of Technology

The George W. Woodruff School of Mechanical Engineering Nuclear & Radiological Engineering/Medical Physics Program

Ph.D. Qualifier Exam

Spring Semester 2009

_____Your ID Code

Radiation Detection & Protection (Day 3)

Instructions

- 1. Use a separate page for each answer sheet (no front to back answers).
- 2. The question number should be shown on each answer sheet.
- 3. ANSWER 4 OF 6 QUESTIONS ONLY.
- 4. Staple your question sheet to your answer sheets and turn in.

NRE/MP Radiation Detection & Protection

Answer 4 of the following questions.

- 1. Describe two different systems (including the detector type and the associated electronics) that can both be used to measure neutron and gamma events separately in a mixed field of neutrons and gamma-rays, and describe the pros and cons of each system.
- You are to determine the half-life and activity of a very weak ^{116m}In sample based on two consecutive 1-hr measurements with a GM counter. Given that the two measurement results are 1000 counts and 475 counts, respectively, and that the detection efficiency of the GM counter is 40% (i.e. it measures 40 counts per 100 disintegrations of ^{116m}In atoms),
 - a. calculate the half-life and the standard deviation (or error) associated with it.
 - b. calculate the initial activity (in dpm) and the associated error of the sample.

Note: you may ignore the background count.

- 3. A narrow beam containing 10²⁰ photons at 6 MeV impinges perpendicularly on a layer of lead 12 mm thick, having a density of 11.3 g/cm³. See <u>attachment A</u> for necessary data.
 - a. How many interactions of each type (i.e., photoelectric, Compton, and pair) occur in the lead?
 - b. How much energy is transferred to charged particles due to pair production interactions in a) above?

ATTACHMENT A

Note: Perform a linear interpolation of the table values if necessary.

Scattering				Pair Pro	oduction	Total Attenuation		
(required) Photon Energy	Coherent	Incoherent	Photoelectric Absorption	In Nuclear Field	In Electron Field	With Coherent Scattering	Without Coherent Scattering	
MeV	cm²/g	cm²/g	cm²/g	cm²/g	cm²/g	cm²/g	cm²/g	
1.000E+00	2.99E-03	4.99E-02	1.81E-02	0.00E+00	0.00E+00	7.10E-02	6.80E-02	
1.022E+00	2.87E-03	4.94E-02	1.73E-02	0.00E+00	0.00E+00	6.96E-02	6.68E-02	
1.250E+00	1.93E-03	4.48E-02	1.17E-02	3.78E-04	0.00E+00	5.88E-02	5.68E-02	
1.500E+00	1.35E-03	4.07E-02	8.32E-03	1.81E-03	0.00E+00	5.22E-02	5.09E-02	
2.000E+00	7.63E-04	3.48E-02	5.03E-03	5.45E-03	0.00E+00	4.61E-02	4.53E-02	
2.044E+00	7.30E-04	3.44E-02	4.85E-03	5.77E-03	0.00E+00	4.58E-02	4.50E-02	
3.000E+00	3.41E-04	2.74E-02	2.63E-03	1.19E-02	9.59E-06	4.23E-02	4.20E-02	
4.000E+00	1.92E-04	2.29E-02	1.72E-03	1.71E-02	3.91E-05	4.20E-02	4.18E-02	
5.000E+00	1.23E-04	1.98E-02	1.26E-03	2.15E-02	7.77E-05	4.27E-02	4.26E-02	
6.000E+00	8.54E-05	1.75E-02	9.89E-04	2.52E-02	1.19E-04	4.39E-02	4.38E-02	
7.000E+00	6.28E-05	1.57E-02	8.10E-04	2.85E-02	1.60E-04	4.53E-02	4.52E-02	
8.000E+00	4.81E-05	1.43E-02	6.84E-04	3.15E-02	2.00E-04	4.67E-02	4.67E-02	
9.000E+00	3.80E-05	1.32E-02	5.91E-04	3.42E-02	2.38E-04	4.82E-02	4.82E-02	
1.000E+01	3.08E-05	1.22E-02	5.20E-04	3.67E-02	2.74E-04	4.97E-02	4.97E-02	

Photon interaction cross section data for Pb

In the following table, 1st column $\rightarrow h\nu$; 2nd column $\rightarrow e\sigma$; 3rd column $\rightarrow e\sigma_{sc}$; 4th column $\rightarrow e\sigma_{tr}$

NRE/MP Radiation Detection & Protection – Cont'd.

hv (keV)	(cm²/۲)	$e^{\sigma_{5c}}$ (cm ² /c)	$\frac{e^{\sigma_{1c}}}{cm^2/e}$
1.0	0.6627 -24	0.6614 - 24	0.1291 -26
1.5	0.6614 - 24	0.6594 - 24	0.1929 - 26
2.0	0.6601 - 24	0.6575 -24	0.2561 - 26
3.0	0.6576 -24	0.6537 - 24	0.3811 - 26
1.0	0.6550 - 24	0.6500 - 24	0.5041 - 26
5.0	0.6525 - 24	0.6463 - 24	0.6251 - 26
6.0	0.6501 - 24	0.6426 - 24	0 7441 - 26
8.0	0.6452 - 24	0.6355 - 24	0.9766 -26
10.0	0.6405 -24	0.6285 -24	0.1202 -25
15.0	0.6290 - 24	0.6116 - 24	0.1735 - 25
20.0	0.6180 - 24	0.5957 - 24	0.2228 - 25
30.0	0.5975 - 24	0.5664 - 24	0.3109 - 25
40.0	0.5787 - 24	0.5400 - 24	0.3871 - 25
50.0	0.5615 - 24	0.5162 - 24	0.4532 - 25
60.0	0.5456 - 24	0.4945 -24	0.5109 - 25
80.0	0.5173 - 24	0.4567 -24	0.6059 - 25
100.0	0.4927 -24	0.4247 -24	0.6800 -25
150.0	0.4436 - 24	0.3631 - 24	0.8054 -25
200.0	0.4065 - 24	0.3185 -24	0.8794 - 25
300.0	0.3535 - 24	0.2581 - 24	0.9531 - 25
400.0	0.3167 - 24	0.2186 - 24	0.9805 - 25
500.0	0.2892 - 24	0.1905 - 24	0.9871 - 25
600.0	0.2675 - 24	0.1692 - 24	0.9831 - 25
662.0	0.2561 - 24	0.1584 - 24	0.9775 - 25
800.0	0.2350 - 24	0.1389 - 24	0.9602 -25
(MeV)			
1.0	0.2112 - 24	0.1183 - 24	0.9294 - 25
1.25	0.1888 - 24	0.9997 - 25	0.8885 -25
1.5	0.1716 - 24	0.8670 -25	0.8488 -25
2.0	0.1464 - 24	0.6867 - 25	0.7769 -25
3.0	0.1151 - 24	0.4865 - 25	0.6644 -25
1.0	0.9597 - 25	0.3772 - 25	0.5825 - 25
5.0	0.8287 - 25	0.3083 - 25	0.5204 - 25
6.0	0.7323 - 25	0.2607 -25	0.4716 -25
8.0	0.5988 - 25	0.1993 - 25	0.3995 -25
10.0	0.5099 - 25	0.1613 -25	0.3485 -25
15,0	0.3771 -25	0.1094 - 25	0.2678 -23
20.0	0.3025 - 25	0.8271 - 26	0.2198 - 23
30.0	0.2200 - 25	0.5563 - 26	0.1644 -2
10.0	0.1746 - 25	0.4191 - 26	0.1327 - 25
50.0	0.1457 - 25	0.3362 - 26	0.1121 - 2
60.0	0.1254 - 25	0.2807 - 26	0.9736 - 2
30.0	0.9882 - 26	0.2110 -26	0.7772 - 20
()(),()	0.8199 - 26	0.1690 - 26	0.6508 - 1

APPENDIX D.1 Klein-Nishina Interaction Cross Sections for Free Electrons"

Table provided by Patrick D. Hiegans, personal communication, 1986

NRE/MP Radiation Detection & Protection – Cont'd.

4. A 10-Ci point isotropic source of ⁴²K is located behind a lead shield with the thickness of 13 cm. Without a shield, the exposure rate at 1 m from the source is known to be 1.37 R h⁻¹. What will be the exposure rate at 1 m from the same source with a lead shield in place?

Note: 1 Ci = 3.7×10^{10} Bq, ρ_{Pb} = 11.3 g/cm³. See <u>attachment B</u> tables for buildup factors and photon attenuation coefficients. You may neglect β -particles for this problem.

ATTACHMENT B

			Number of Relaxation Lengths, μx							
Material	MeV	1	2	4	7	10	15	2		
Water	0.5	2.52	5.14	14.3	38.8	77.6	178	334		
	1.0	2.13	3.71	7.68	16.2	27.1	50.4	82		
	2.0	1.83	2.77	4.88	8.46	12.4	19.5	27		
	3.0	1.69	2.42	3.91	6.23	8.63	12.8	17		
	4.0	1.58	2.17	3.34	5.13	6.94	9.97	12		
	6.0	1.46	1.91	2.76	3.99	5.18	7.09	8		
	8.0	1.38	1.74	2.40	3.34	4.25	5.66	6.		
	10.0	1.33	1.63	2.19	2.97	3.72	4.90	5.		
Aluminum	0.5	2.37	4.24	9.47	21.5	38.9	80.8	141		
	1.0	2.02	3.31	6.57	13.1	21.2	37.9	58.		
	2.0	1.75	2.61	4.62	8.05	11.9	18.7	26.		
	3.0	1.64	2.32	3.78	6.14	8.65	13.0	17.		
	4.0	1.53	2.08	3.22	5.01	6.88	10.1	13.		
	6.0	1.42	1.85	2.70	4.06	5.49	7.97	10.		
	8.0	1.34	1.68	2.37	3.45	4.58	6.56	8.		
	10.0	1.28	1.55	2.12	3.01	3.96	5.63	7.		
Iron	0.5	1.98	3.09	5.98	11.7	19.2	35.4	55.		
	1.0	1.87	2.89	5.39	10.2	16.2	28.3	42.		
	2.0	1.76	2.43	4.13	7.25	10.9	17.6	25.		
	3.0	1.55	2.15	3.51	5.85	8.51	13.5	19.		
	4.0	1.45	1.94	3.03	4.91	7.11	11.2	16.		
	6.0	1.34	1.72	2.58	4.14	6.02	9.89	14.		
	8.0	1.27	1.56	2.23	3.49	5.07	8.50	13.		
	10.0	1.20	1.42	1.95	2.99	4.35	7.54	12.		
Lead	0.5	1.24	1.42	1.69	2.00	2.27	2.65	2.		
	1.0	1.37	1.69	2.26	3.02	3.74	4.81	5.		
	2.0	1.39	1.76	2.51	3.66	4.84	6.87	9.		
	3.0	1.34	1.68	2.43	2.75	5.30	8.44	12.		
	4.0	1.27	1.56	2.25	3.61	5.44	9.80	16.		
	6.0	1.18	1.40	1.97	3.34	5.69	13.8	32.		
	8.0	1.14	1.30	1.74	2.89	5.07	14.1	44.		
	10.0	1.11	1.23	1.58	2.52	4.34	12.5	39.		
Uranium	0.5	1.17	1.30	1.48	1.67	1.85	2.08			
	1.0	1.31	1.56	1.98	2.50	2.97	3.67	****		
	2.0	1.33	1.64	2.23	3.09	3.95	5.36	6.		
	3.0	1.29	1.58	2.21	3.27	4.51	6.97	9.		
	4.0	1.24	1.50	2.09	3.21	4.66	8.01	12.		
	6.0	1.16	1.36	1.85	2.96	4.80	10.8	23.		
	8.0	1.12	1.27	1.66	2.61	4.36	11.2	28.		
	10.0	1.09	1.20	1.51	2.26	3.78	10.5	28.		

TABLE 15.1. Dose Buildup Factors B for a Point Isotropic Source

Source: Tables 15.1 and 15.2 are from U.S. Public Health Service, Radiological Health Handbc Publ. No. 2016, Bureau of Radiological Health, Rockville, Md. (1970). For concrete, use aver of values for Al and Fe.

NRE/MP Radiation Detection & Protection – Cont'd.

- 5. A 600-MeV parallel alpha beam impinges on a person. Assume the person is 30 cm thick, semi-infinite slab of striated muscle (1 g/cm³). The incident intensity of the beam is 10⁶ alpha particles per second per cm². Data for alphas in striated muscle are attached.
 - a. What is the absorbed dose rate (Gy/s) at a depth of 8 cm in the person.
 - b. Does the thickness of the "person" exceed the range of the alpha particle?
 - c. Assuming that the maximum of the Bragg peak occurs at the maximum stopping power or LET, at what depth in the phantom does it occur?

ALPHA DATA FROM ICRU REPORT 49

ALPHA	PARTICLES	IN	MUSCLE,	STRIATED	(ICRU)
-------	-----------	----	---------	----------	--------

ENERGY	S	TOPPING POW	ER	CSDA	DETOUR	ENERG	r s	TOPPING POW	ER	CSDA	DETOUR
DINERIOI	FLECTRONIC	NUCLEAR	TOTAL	RANGE	FACTOR		ELECTRONIC	NUCLEAR	TOTAL.	RANGE	FACTOR
MeV	MeV cm2/g	MeV cm2/g	MeV cm2/g	g/cm2		MeV	MeV cm2/g	MeV cm2/g	MeV cm2/g	g/cm2	
0 001	1 0478+02	2 226E+02	3_273E+02	3.302E-06	0.5172	4.5	9.445E+02	7.654E-01	9.453E+02	3.219E-03	0.9924
0.0015	1 2045+02	2 0295+02	3 324E+02	4.814E-06	0.5335	5.0	8.772E+02	6.973E-01	8.779E+02	3.768E-03	0.9934
0.0015	1.5052+02	1 9695+02	3 3725+02	6 308E-06	0.5482	5.5	8.199E+02	6.408E-01	8.206E+02	4.358E-03	0.9942
0.002	1.5056+02	1.0001+02	3.0725102	7 7705-06	0 5612	5.0	7 706E+02	5 932E-01	7.712E+02	4.987E-03	0.9949
0.0025	1.692E+02	1.734E+02	3.4ZDETUZ	7.7792-00	0.5012	6.6	7 2725+02	5 52/8-01	7 2705+02	5 655E-03	0 9954
0.003	1.862E+02	1.622E+02	3.484E+02	9.227E-06	0.5/30	0.5	7.2735402	J. JZ46-01	F 007E+02	6 361E-03	0.0059
0.004	2.165E+02	1.444E+02	3.609E+02	1.205E-05	0.5935	7.0	6.892E+02	5.1/1E-01	5.89/E+UZ	D. 301E-03	0.9936
0.005	2.434E+02	1.307E+02	3.741E+02	1.477E-05	0.6109	7.5	6.553E+02	4.862E-01	6.558E+02	7.104E-03	0.9962
0 005	2 679E+02	1.198E+02	3.877E+02	1.740E-05	0.6261	8.0	6.250E+02	4.590E-01	6.255E+02	7.885E-03	0.9965
0.007	2 905E+02	1 108E+02	4 013E+02	1.993E-05	0.6395	8.5	5.977E+02	4.348E-01	5.981E+02	8.703E-03	0.9968
0.007	3 1175+02	1 033E+02	4 150E+02	2 238E-05	0.6514	9.0	5.729E+02	4.131E-01	5.733E+02	9.557E-03	0.9970
0.008	3.11/2+02	1.0000000	4.1901-02	2 4755-05	0 6622	9 5	5 504E+02	3 936E-01	5.508E+02	1.045E-02	0.9972
0.009	3.3102402	9.0902-01	4.2036102	2.4755 05	0,0022	0.5	2.00.00.00				0.0270300039
0 010	3.505E+02	9.136E+01	4.419E+02	2.705E-05	0.6720	10.0	5.297E+02	3.759E-01	5.301E+02	1.137E-02	0.9974
0 0125	3 9425+02	8 025E+01	4 745E+02	3.251E-05	0.6931	12.5	4.478E+02	3.075E-01	4.481E+02	1.652E-02	0.9980
0.0125	1 2205102	7 1065+01	5 0582+02	3 761E-05	0 7105	15.0	3.896E+02	2.608E-01	3.898E+02	2.252E-02	0.9984
0.015	4.3395402	7.100E.01	5 350E+02	4 241E-05	0 7252	17 5	3 459E+02	2.268E-01	3.461E+02	2.934E-02	0,9987
0.0175	4.7066+02	6.5256+01	5.3386402	4.2416-05	0.7232	20.0	3 1192+02	2 0098-01	3 120E+02	3 6965-02	0.9988
0.020	5.049E+02	5,988E+01	5.64/6+02	4.6956-05	0.7378	20.0	3.1105+02	2.0030 01	0.0462+02	4 536E-02	0.0000
0.0225	5.372E+02	5.543E+01	5.926E+02	5.127E-05	0.7488	22.5	2.844E+02	1.804E-01	2.8402402	4.3306-02	0.9990
0.025	5.678E+02	5.166E+01	6.194E+02	5.540E-05	0.7586	25.0	2.618E+02	1.638E-01	2.519E+02	5.453E-02	0.9990
0.0275	5.969E+02	4.843E+01	6.454E+02	5.935E-05	0.7672	27.5	2.428E+02	1.501E-01	2.429E+02	6.444E-02	0.9991
0.030	6 249E+02	4 562E+01	6.705E+02	6.315E-05	0.7751	30.0	2.265E+02	1.386E-01	2.267E+02	7.511E-02	0.9992
0.000	6 7765+02	4.007E+01	7 1855+02	7 035E-05	0 7885	35.0	2.003E+02	1.202E-01	2.005E+02	9.861E-02	0.9993
0.035	6.773ET02	4.0375101	7.1000-02	7.7108-05	0 7000	40.0	1 800E+02	1 063E-01	1 801E+02	1 250E-01	0.9993
0.040	7.26/E+02	3.7272+01	7.6392+02	7.7102-05	0.7888	40.0	1.0001.02	1.0000 01	1.0010.00		
0.045	7 728E+02	3 424E+01	8.071E+02	8.346E-05	0.8096	45.0	1.637E+02	9.527E-02	1.638E+02	1.541E-01	0.9994
0.045	0 1655102	2 1715+01	8 4825+02	8 951E-05	0 8180	50.0	1.504E+02	8.637E-02	1.505E+02	1.860E-01	0.9994
0.050	0.1036402	3.1715101	0.4025.02	0.6078-05	0 8254	55 0	1 3025+02	7 902E-02	1 393E+02	2 206E-01	0.9994
0.055	8.581E+02	2.9562+01	8.877E+02	9.5276-05	0.0234	55.0	1 2005+02	7 2825-02	1 2085+02	2 578F-01	0 9994
0.060	8.978E+02	2.771E+01	9.2552+02	1.008E-04	0.8320	60.0	1.2902+02	7.2035-02	1.2305102	2.5700 01	0.0005
0.065	9.358E+02	2.610E+01	9,619E+02	1.061E-04	0.8379	65.0	1.216E+02	6.755E-02	1.21/2+02	2.9/01-01	0.9995
0.070	9.723E+02	2.469E+01	9.970E+02	1.112E-04	0.8432	70.0	1.145E+02	6.300E-02	1.146E+02	3.399E-01	0.8882
0.075	1.007E+03	2.343E+01	1.031E+03	1.161E-04	0.8481	75.0	1.083E+02	5.903E-02	1.083E+02	3.848E-01	0.9995
0.080	1 0415+03	2 231E+01	1 064E+03	1.209E-04	0.8525	80.0	1.027E+02	5.553E-02	1.028E+02	4.322E-01	0.9995
0.000	1.0745+02	2 1205+01	1 0065+03	1 2558-04	0 8565	85.0	9 781E+01	5.244E-02	9.786E+01	4.821E-01	0.9995
0.085	1.0/45+03	2.1305+01	1.0305+00	1.2008-04	0.0505	00.0	9 337E+01	4 968F-02	9 342E+01	5 344E-01	0 9995
0.090	1.1062+03	2.0365701	1.1265+03	1.344E-04	0.8637	95.0	8.936E+01	4.720E-02	8.941E+01	5.891E-01	0.9995
0.095	1.1372+03	1.9552+01	1.1302.03	1.5442 64	0.0007	00.0	0.0001.01				
0 100	1.167E+03	1.879E+01	1.185E+03	1.387E-04	0.8670	100.0	8.572E+01	4.496E-02	8.576E+01	6.463E-01	0.9995
0 125	1 3045+03	1 578E+01	1 320E+03	1 586E-04	0.8803	125.0	7.154E+01	3.635E-02	7.158E+01	9.669E-01	0.9996
0.125	1.0040.00	1.3565+01	1 / 205+03	1 7685-04	0 8904	150 0	6 176E+01	3 051E-02	6.179E+01	1.344E+00	0.9996
0.150	1.4236703	1.30000101	1.4000100	1.0355-04	0 9093	175 0	5 458E+01	2 629F-02	5 461E+01	1 775E+00	0 9996
0.175	1.532E+03	1.208E+01	1.5446+03	1.9356-04	0.0903	1/5.0	J. 4JOLTOI	2.0235 02	6 010E+01	2 2505+00	0.0000
0.200	1.629E+03	1.085E+01	1.540E+03	2.092E-04	0.9048	200.0	4.9066401	2.3102-02	4.9105+01	2.2395+00	0.3330
0.225	1.715E+03	9.859E+00	1.725E+03	2.241E-04	0.9103	225.0	4.4/1E+01	2.0615-02	4.4/3E+01	2.793E+00	0.9996
0.250	1.793E+03	9.048E+00	1.802E+03	2.382E-04	0.9149	250.0	4.116E+01	1.861E-02	4.118E+01	3.376E+00	0.9995
0.275	1.863E+03	8.370E+00	1.871E+03	2.519E-04	0.9190	275.0	3.822E+01	1.696E-02	3.824E+01	4.007E+00	0.9996
0.30	1 925E+03	7 793E+00	1 933E+03	2.650E-04	0.9225	300.0	3.574E+01	1.557E-02	3.575E+01	4.683E+00	0.9996
0.35	2 0325+03	6 862E+00	2 0395+03	2 902E-04	0 9286	350.0	3 177E+01	1.339E-02	3.179E+01	6.170E+00	0,9996
0.35	2.0326+03	0.002E+00	2.0395+03	2.3025 04	0.0200	400.0	2 9755+01	1 1745-02	2 8765+01	7 8265+00	0 0006
0.40	2.1162+03	6.1425+00	2.1222403	3.1426-04	0.9335	400.0	2.0755101	1.1742 02	2.0702.01	1.0200.00	0.0000
0.45	2.181E+03	5.568E+00	2.187E+03	3.374E-04	0.9377	450.0	2.636E+01	1.046E-02	2.637E+01	9.644E+00	0.9996
0 50	2 230F+03	5 098E+00	2 235E+03	3.600E-04	0.9413	500.0	2.442E+01	9.423E-03	2.443E+01	1.162E+01	0.9997
0.50	2.2002.00	1 7068+00	2 2705+03	3 821E-04	0 9445	550 0	2 283E+01	8 578E-03	2.283E+01	1.373E+01	0.9997
0.55	2.2655+03	4.7062700	2.2705+03	3.021E-04	0.0445	500.0	2.1405+01	7 0735-03	2 1405+01	1 5008+01	0 9997
0.60	2.289E+03	4.374E+00	2.2932+03	4.041E-04	0.9473	600.0	2.1406+01	7.0736-03	2.1485101	1.0305+01	0.0007
0.65	2.302E+03	4.088E+00	2.306E+03	4.258E-04	0.9498	650.0	2.034E+01	7.274E-03	2.034E+01	1.8392+01	0.9997
0.70	2.306E+03	3.839E+00	2.310E+03	4.474E-04	0.9520	700.0	1.935E+01	6.758E-03	1.935E+01	2.091E+01	0.9997
0.75	2.304E+03	3.621E+00	2.307E+03	4.691E-04	0.9541	750.0	1.849E+01	6.310E-03	1.849E+01	2.355E+01	0.9997
0 80	2 295E+03	3 428E+00	2.299E+03	4.908E-04	0.9560	800.0	1.773E+01	5.917E-03	1.774E+01	2.631E+01	0.9997
0.00	2 2005+03	3 256F+00	2 2855+03	5 126E-04	0 9578	850 0	1.706E+01	5.570E-03	1.706E+01	2.919E+01	0.9997
0.05	2.2020100	3.2000-00	2.2050100	5 3468-04	0.0504	900 0	1 646F+01	5 262E-03	1 647E+01	3 217E+01	0 9997
0.90	2.264E+03	3.101E+00	2.20/1703	5.3402-04	0.0004	050.0	1.5002-01	4 0075-03	1 5035+01	3 5268401	0 0007
0.95	2.244E+03	2.961E+00	Z.Z46E+03	5.567E-04	0.9803	920.0	1.3926+0.	4.90/1-03	1.0002+01	3.5201-01	0.000/
1.00	2,220E+03	2.834E+00	2.223E+03	5.791E-04	0.9623	1000.0	1.544E+0	4.740E-03	1.545E+01	3.845E+01	0,9997
1 25	2 063E+03	2.340E+00	2.065E+03	6.956E-04	0.9683						
1 60	1 00/2:00	2 000F+00	1 8065+03	8 219F-04	0 9730						
1.50	1.0942+03	2.000ET00	1.0301-03	0.2195-04	0.0766						
1.75	1.742E+03	1./SUE+00	1.7445+03	9.0901-04	0.9766						
2.00	1.511E+03	1.558E+00	1.512E+03	1.109E-03	0.9796						
2.25	1.498E+03	1.407E+00	1.500E+03	1.270E-03	0.9821						
2.50	1.401E+03	1.283E+00	1.403E+03	1.442E-03	0.9841						
2 75	1.318E+03	1.180E+00	1.319E+03	1.626E-03	0.9858						
3.0	1 2448+03	1 094F+00	1 246E+03	1 821E-03	0 9872						
3.0	1 1000-00	0 5622-01	1 1005400	2 2/55-03	0 0805						
3.5	1.123E+03	9.553E-01	1.1232+03	2.2432-03	0.9095						
4.0	1.025E+03	8,493E-01	1.026E+03	Z./11E-03	0.9911						

NRE/MP - Radiation Detection and Protection – Cont'd.

- 6. The air concentration of Cs-138, the short-lived particulate progeny of Xe-138, is found at a research reactor be in the air at a concentration of 400 Bq/cm³.
 - a. Air is sampled through a particulate filter at a flow rate of 3.5 liters/minute (1 liter 1000 cm³). The collection efficiency of the filter is 90%. Starting with a fresh filter, what quantity of activity remains on the filter at the end of a 33-minute sampling period?
 - b. What activity of Cs-138 would be present on the filter at equilibrium? Assume the air concentration is always the same.
 - c. If the filter is used to sample until the equilibrium amount of Cs-138 attached to it and then immediately (no decay before it is loaded into the detector) counted for 10 minutes with a GM counter that has a 10% absolute detection efficiency, how many total counts are observed?

Half-life of Cs-138 = 33 minutes.