Georgia Institute of Technology

The George W. Woodruff School of Mechanical Engineering Nuclear & Radiological Engineering/Medical Physics Program

Ph.D. Qualifier Exam

Spring Semester 2007

_____Your ID Code

Radiation Physics (Day 1)

Instructions

- 1. Use a separate page for each answer sheet (no front to back answers).
- 2. The question number should be shown on each answer sheet.
- 3. ANSWER 4 OF 6 QUESTIONS ONLY.
- 4. Staple your question sheet to your answer sheets and turn in.

NRE/MP Radiation Physics

Answer any 4 of the following 6 questions:

- 1. Alpha particles of energy 6.50 MeV are Coulomb scattered by a gold foil. (a) What is the impact parameter when the scattered particles are observed at 90°? (b) Again for scattering at 90°, find the smallest distance between the α particles and the nucleus, and also find the kinetic and potential energies of the α particle at that distance. (c) At what scattering angle is the scattering rate (per unit solid angle) an order of magnitude larger than it is at 90°?
- 2. (a) A beam of deuterons of non-relativistic energy is elastically scattered by a hydrogen target. Show that according to classical mechanics the scattering angle cannot exceed 30° in the laboratory system. However, if a beam of protons is incident on a deuterium target show that there is no such limit to the angle at which elastic scattering can occur; (b) Again treating the system classically show that if the neutron-neutron scattering is elastic, the angle between their final directions in the laboratory frame is always 90°.

Attachment A								
Nuclide	Mass	Abundance	Nuclide	Mass	Abundance	Nuclide	Mass	Abundance
$(_{z}XA)$	excess	or	$(_z XA)$	excess	or	$(_zXA)$	excess	or
	(µu)	half-life		(µu)	half-life		(µu)	half-life
₀ n1	8665	$\beta^-614.6$ s	3Li6	15122	7.5%	10	13534	β ⁻ 1.51 My
			7	16004	92.5%	11	21658	$\beta^{-13.81}$
1H1	7825	99.985%	8	22487	$\beta^{-838}\mathrm{ms}$	12	26920	$\beta^{-}21.3$ m
2	14102	0.015%	9	26789	$\beta^{-}178.3 \mathrm{ms}$			
3	16049	$\beta^{-12.33}$ y				5B8	24607	$\beta^+770\mathrm{m}$
Ha2	16020	0.0001278/	4Be7	16929	ε53.29 d	9	13329	p 800 z
2He3	16029	0.000137%	8	5305	α67 as	10	12937	19.9%
4	2603	99.99986%	9	12182	100%	11	9305	80.1%
Nuclide	Mass	Abundance	Nuclide	Mass	Abundance			
$(_z XA)$	excess	or	$(_zXA)$	excess	or			
	(µu)	half-life		(µu)	half-life			
236	45562	α23.42 My	249	75947	$\beta^{-}64.15 \mathrm{m}$			
237	48724	$\beta^-6.75$ d	250	78350	f9ky			
238	50783	99.2745%						
239	54288	$\beta^{-}23.45\mathrm{m}$	97Bk245	66355	ε4.94 d			
			246	68664	$\beta^{+}1.80 d$			
93Np234	42888	$\beta^+4.4$ d	247	70299	α1.38 ky			
235	44056	ε396.1 d	248	73076	α9 y			
236	46560	ε154 ky	249	74980	$\beta^{-}320 d$			
237	48167	α2.144 My						
238	50940	$\beta^{-}2.117 \mathrm{d}$	98Cf250		α13.08 y			
239	52931	$\beta^{-}2.3565 \mathrm{d}$	251		α900 y			
94Pu236	46048	-2 959	252		α2.645 y			
237	48404	α2.858 y ε45.2 d	253		$\beta^{-17.81} d$			
237	49553	ε43.2 d α87.7 y	254	91037	f 60.5 d $\beta^- 85 m$			
239	52157	α24.11 ky		93441	f 12.3 m			
240	53807	α6.564 ky	200		J Luis III			
241	56845	β ⁻ 14.35 y	99Es251	79983	ε33 h			
242	58737	α373.3 ky	252		α471.7 d			
243	61997	$\beta^-4.956$ h	253	84818	α20.47 d			
244	64198	α80.8 My	254	88016	α275.7 d			
				90267	$\beta^{-}39.8 d$			
95Am240	55288	β^+ 50.8 h						
241	56823	α432.2 y	100 Fm251		β^+ 5.30 h			
242	59543	$\beta^{-}16.02 \mathrm{h}$		82460	α25.39 h			
243	61373	α7.37 ky	253		ε3.00 d			
244	64279	$\beta^{-}10.1$ h		86848	α3.240 h			
Cm242	58829	16203		89955	α20.07 h			
₉₆ Cm242 243	61382	α162.8 d		91767	f 157.6 m			
243	61382	α29.1 y	257	95099	α100.5 d			
		α18.10 y	Mane	01075	0+07			
245	65486	α8.5 ky	101 Md255		$\beta^+ 27 \mathrm{m}$			
246 247	67218 70347	α4.73 ky α15.6 My	256		β^+ 78.1 m			
247	72342	α15.6 My α340 ky		95535 98426	ε5.52 h α51.50 d			

NRE/MP Radiation Physics-Cont'd.

3. In an alloyed Am(Be) neutron source, neutrons are produced from the interactions of 5.5-MeV alpha particles (emitted from ²⁴¹Am) with the ⁹Be nuclei. That is,

$${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{1}_{0}n + {}^{12}_{6}C$$

- a. Use the mass table (attachment A) to calculate the kinetic energy of the alpha particle.
- b. Given that the nuclear radius obeys the formula, $R = 1.25 \times A^{1/3}$ fm and that $\frac{e^2}{4\pi\varepsilon_0} = 1.44$ MeV

fm, use the classical approach to estimate the coulomb barrier (in *MeV*) for the above (α,n) reaction.

- c. Use the classical approach to estimate the cross section (in barns) for the above (α,n) reaction, and discuss how the cross section should be modified by the quantum-mechanical approach.
- 4. As a follow-up question of problem 1, use the mass table (attachment A) to calculate the energy range of neutrons emitted in the LAB system.
- 5. Answer the following:
 - a. What is the kinetic energy of the Compton electron for photons scattered at 45° during a Compton interaction if the energy of the incident photon is 150 keV?
 - b. What effect does an increase in the photon scattering angle have on the scattered photon?
- 6. An assay of uranium ore at equilibrium shows an atom ratio for ²³⁵U/²³¹Pa of 3.04(10⁶). Calculate the half-life of ²³⁵U from the assay data and the known half-life of ²³¹Pa (3.28 x 10⁴ years).