Georgia Institute of Technology

The George W. Woodruff School of Mechanical Engineering Nuclear \& Radiological Engineering/Medical Physics Program

Ph.D. Qualifier Exam

Spring Semester 2007
\qquad Your ID Code

Radiation Physics (Day 1)

Instructions

1. Use a separate page for each answer sheet (no front to back answers).
2. The question number should be shown on each answer sheet.
3. ANSWER 4 OF 6 QUESTIONS ONLY.
4. Staple your question sheet to your answer sheets and turn in.

NRE/MP Radiation Physics

Answer any 4 of the following 6 questions:

1. Alpha particles of energy 6.50 MeV are Coulomb scattered by a gold foil. (a) What is the impact parameter when the scattered particles are observed at 90° ? (b) Again for scattering at 90°, find the smallest distance between the α particles and the nucleus, and also find the kinetic and potential energies of the α particle at that distance. (c) At what scattering angle is the scattering rate (per unit solid angle) an order of magnitude larger than it is at 90° ?
2. (a) A beam of deuterons of non-relativistic energy is elastically scattered by a hydrogen target. Show that according to classical mechanics the scattering angle cannot exceed 30° in the laboratory system. However, if a beam of protons is incident on a deuterium target show that there is no such limit to the angle at which elastic scattering can occur; (b) Again treating the system classically show that if the neutron-neutron scattering is elastic, the angle between their final directions in the laboratory frame is always 90°.

NRE/MP Radiation Physics-Cont’d.

3. In an alloyed $\mathrm{Am}(\mathrm{Be})$ neutron source, neutrons are produced from the interactions of $5.5-\mathrm{MeV}$ alpha particles (emitted from ${ }^{241} \mathrm{Am}$) with the ${ }^{9} \mathrm{Be}$ nuclei. That is,

$$
{ }_{4}^{9} \mathrm{Be}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{0}^{1} \mathrm{n}+{ }_{6}^{12} \mathrm{C}
$$

a. Use the mass table (attachment A) to calculate the kinetic energy of the alpha particle.
b. Given that the nuclear radius obeys the formula, $R=1.25 \times A^{1 / 3} \mathrm{fm}$ and that $\frac{e^{2}}{4 \pi \varepsilon_{0}}=1.44 \mathrm{MeV}$ $f m$, use the classical approach to estimate the coulomb barrier (in MeV) for the above (α, n) reaction.
c. Use the classical approach to estimate the cross section (in barns) for the above (α, n) reaction, and discuss how the cross section should be modified by the quantum-mechanical approach.
4. As a follow-up question of problem 1 , use the mass table (attachment A) to calculate the energy range of neutrons emitted in the LAB system.
5. Answer the following:
a. What is the kinetic energy of the Compton electron for photons scattered at 45° during a Compton interaction if the energy of the incident photon is 150 keV ?
b. What effect does an increase in the photon scattering angle have on the scattered photon?
6. An assay of uranium ore at equilibrium shows an atom ratio for ${ }^{235} \mathrm{U} / 231 \mathrm{~Pa}$ of $3.04\left(10^{6}\right)$. Calculate the

