Georgia Institute of Technology

The George W. Woodruff School of Mechanical Engineering Nuclear & Radiological Engineering/Medical Physics Program

Ph.D. Qualifier Exam

Fall Semester 2007

_____Your ID Code

Radiation Physics (Day 1)

Instructions

- 1. Use a separate page for each answer sheet (no front to back answers).
- 2. The question number should be shown on each answer sheet.
- 3. ANSWER 4 OF 6 QUESTIONS ONLY.
- 4. Staple your question sheet to your answer sheets and turn in.

NRE/MP Radiation Physics

Answer any 4 of the following 6 questions:

- 1. A gold foil weighing 3.5 mg is irradiated by a thermal-neutron flux density of 10^{13} n cm⁻² s⁻¹. The interaction cross section is $\sigma = 96 \times 10^{-24}$ cm²/atom, and the half-life, $\tau_{1/2} = 2.70$ d for ¹⁹⁸Au. The value of Avogadro's constant is 6.023×10^{23} atoms/mole. The gram-atomic weight of gold is 197.0 g/mole. One curie (1 Ci) is 3.7×10^{10} Bq.
 - a) How long will it take for the foil to achieve an activity of 100 mCi of ¹⁹⁸Au?
 - b) What is the equilibrium level of activity?
 - c) How long would it have taken to reach the same activity if the decay of ¹⁹⁸Au were negligible during that time?
 - d) What is the true activity reached at that time?
- 2. Answer the following questions regarding photon interactions with media. State your assumptions if necessary.
 - a) Is the Compton mass attenuation coefficient larger in carbon (Z= 6; A=12) or lead (Z=82; A=207)? Why?
 - b) On the basis of the Klein-Nishna theory, what is the ratio of the Compton interaction cross sections per atom for lead and carbon?
 - c) Suppose two photons with $h\nu = 2$ and 20 MeV, respectively, undergo pair production interactions with a medium. What is the average energy of the charged particles resulting from pair production in the nuclear field for each photon? What is the average energy of the charged particles resulting from pair production in the electron field (i.e., triplet production) for each photon?
- 3. Answer the following questions regarding charged particle interactions with media. State your assumptions if necessary.
 - a) Compare the passage of charged and uncharged particles through matter. What is the approximate probability of a single charged particle achieving a pathlength equal to twice its range? What is the approximate probability of a single photon having a pathlength twice as great as the mean free path $1/\mu$ (Assume the photon is totally absorbed in its first interaction).
 - b) Briefly describe the general types of interactions that contribute to the collision stopping power, (dT/pdx)_c.
- 4. The semi-empirical nuclear binding energy formula is given below:

$$B = a_1 A - a_2 A^{2/3} - a_3 Z^2 A^{-1/3} - a_4 (N - Z)^2 A^{-1} \pm a_5 A^{-1/2}$$

where $a_1 = 15.56 \text{ MeV}$, $a_2 = 17.23 \text{ MeV}$, $a_3 = 0.7 \text{ MeV}$, $a_4 = 23.28 \text{ MeV}$, and $a_5 = 12.0 \text{ MeV}$

(a) Explain the physical meaning of each of the five terms in the above formula.

NRE/MP Radiation Physics – Cont'd.

- (b) Use the formula to calculate the mass of $\frac{208}{82}Pb$ nucleus. Other data needed: $m_n = 1.008665 \text{ u}, m_n = 1.0072765 \text{ u}, \text{ and } 1 \text{ u} = 931.494 \text{ MeV}$
- (c) Discuss the discrepancy between your result of (b) and that shown in <u>Attachment A</u>.
- 5. In an alloyed Pu(Be) neutron source, neutrons are produced from the interactions of alpha particles (emitted from ²³⁸Pu) with the ⁹Be nuclei. That is,

$$^{238}Pu \rightarrow ^{234}U + ^{4}_{2}He$$

and

$${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{1}_{0}n + {}^{12}_{6}C$$

- (a) Use the mass table (<u>Attachment A</u>) to calculate the kinetic energy of the alpha particle.
- (b) Given that the nuclear radius obeys the formula, $R = 1.25 \times A^{1/3}$ fm and that $\frac{e^2}{4\pi\varepsilon_0} = 1.44$

MeV fm, use the classical approach to estimate the coulomb barrier (in *MeV*) for the above (α, n) reaction.

- (c) Use the classical approach to estimate the cross section (in barns) for the above (α,n) reaction, and discuss how the cross section should be modified by the quantum-mechanical approach.
- 6. The first resonance is observed at $E_n = 2.077$ MeV in the neutron total cross section for ${}_0^1 n + {}^{12}C \rightarrow {}^{13}C$ in a laboratory experiment. (a) What energy, measured from the ground state of ${}^{13}C$, is the excited state which gives rise to the above resonance? (b) If the total width (Γ) of the resonance is 8 keV, what is the most probable reaction type of this resonance? e.g. (n, γ), (n, elastic), (n, inelastic),... etc. Why?

NRE/MP Radiation Physics – Cont'd.

Nuclear properties

Nuclide (_z XA)	Mass excess (µu)	Abundance or half-life	Nuclide (zXA)	Mass excess (µu)	Abundance or half-life	Nuclide (zXA)	Mass excess (µu)	Abundance or half-life
₈₀ Hg192	-34429	ε4.85 h	209	-19617	100 %	224	23231	$\beta^{-}3.30 \mathrm{m}$
193	-33356	β^+ 3.80 h	210	-15895	β^{-} 5.013 d	225	25607	$\beta^{-}4.0 \mathrm{m}$
194	-34619	ε440 y	211	-12742	α2.14 m	226	29340	$\beta^{-}49 \mathrm{s}$
195	-33366	β^+ 9.9 h	212	-8728	$\beta^{-}60.55 \mathrm{m}$	227	31831	$\beta^{-}2.47 \mathrm{m}$
196	-34185	0.15%	213	-5625	$\beta^{-}45.59 \mathrm{m}$			
197	-32804	ε64.14 h	214	-1301	β^{-} 19.9 m	88Ra222	15361	α38.0 s
198	-33248	9.97%				223	18497	α11.435 d
199	-31738	16.87%	₈₄ Po204	-19693	β^+ 3.53 h	224	20202	α3.66 d
200	-31691	23.10%	205	-18834	β^+ 1.66 h	225	23604	β^{-} 14.9 d
201	-29715	13.18%	206	-19535	β^+ 8.8 d	226	25403	α1.600 ky
202	-29374	29.86%	207	-18422	β^+ 5.80 h	227	29171	$\beta^{-}42.2 \mathrm{m}$
203	-27142	$\beta^{-}46.612 d$	208	-18769	α2.898 y	228	31064	β^{-} 5.75 y
204	-26524	6.87%	209	-17585	α102 y			
205	-23944	$\beta^{-}5.2 \mathrm{m}$	210	-17143	α138.376 d	89Ac223	19126	α2.10 m
206	-22501	$\beta^{-}8.15 \mathrm{m}$	211	-13363	α516 ms	224	21708	$\beta^+ 2.9 \mathrm{h}$
71100	20.522	0± 5 0 1	212	-11148	α299 ns	225	23221	α10.0 d
81 TI198	-29533	β^+ 5.3 h				226	26090	β^- 29.37 h
199	-30188	β^+ 7.42 h	85At208	-13417	β^+ 1.63 h	227	27747	$\beta^{-}21.773 \text{ y}$
200	-29054	β^+ 26.1 h	209	-13841	β^+ 5.41 h	228	31015	$\beta^-6.15$ h
201	-29196	ε72.912 h	210	-12869	β^+ 8.1 h	229	32926	$\beta^{-}62.7 \mathrm{m}$
202	-27909	$\beta^{+}12.23 \mathrm{d}$	211	-12520	ε7.214 h	230	36028	$\beta^{-}122 s$
203	-27671	29.524%	212	9266	α314 ms	231	38551	$\beta^-7.5 \mathrm{m}$
204	-26151	$\beta^{-}3.78 \text{ y}$	213	-7079	α125 ns			
205	-25588	70.476%	214	-3644	α558 ns	₉₀ Th226	24891	α30.57 m
206	-23905	$\beta^{-}4.199 \mathrm{m}$	215	-1359	$\alpha 100 \ \mu s$	227	27699	α18.72 d
207	-22592	$\beta^{-}4.77 \mathrm{m}$	216	2409	α300 μs	228	28731	α1.9131 y
208	-17995	$\beta^{-}3.053 \mathrm{m}$	217	4710	α32.3 ms	229	31755	α7.34 ky
DI 200	20105		218	8682	α1.5 s	230	33127	α75.38 ky
82Pb200	-28185	ε21.5 h	219	11294	α56 s	231	36297	$\beta^{-}25.52 \mathrm{h}$
201	-27150	β^+ 9.33 h	D 010			232	38050	100%
202	-27856	ε52.5 ky	86Rn212	-9311	α23.9 m	233	41577	$\beta^{-}22.3 \mathrm{m}$
203 204	-26625	ε51.873 h	213	-6132	α25.0 ms	234	43596	$\beta^{-}24.10 \mathrm{d}$
204	-26971 -25533	1.4% ε15.3 My	214	-4654	α270 ns	D-220	22000	1 60 1
205	-25551	24.1%	215 216	-1271	$\alpha 2.30 \mu s$	91Pa229	32088	ε1.50 d
200	-24119	24.1%	210	258	α45 μs	230	34533	β^+ 17.4 d
207	-23364	52.4%	217	3914	α540 μs	231	35879	α 32.76 ky
208	-18926	$\beta^{-}3.253 \mathrm{h}$	218	5587 9475	$\alpha 35 \mathrm{ms}$	232	38582	$\beta^{-}1.31 d$
209	-15827				α3.96 s	233	40240	$\beta^{-}26.967 d$
210	-11269	$\beta^{-}22.3 \text{ y}$ $\beta^{-}36.1 \text{ m}$	220 221	11384 15459	α 55.6 s β^{-} 25 m	234	43302	$\beta^-6.70$ h
212	-8112	β^{-} 10.64 h	221	17570	α3.8235 d	235	45432	$\beta^{-}24.5 \mathrm{m}$
	0112	p 10.041	222	11570	u3.8255u	₉₂ U230	33927	α20.8 d
83Bi204	-22194	$\beta^{+}11.22$ h	₈₇ Fr219	9241	α20 ms	₉₂ 0230 231	36289	α20.8 d ε4.2 d
205	-22625	$\beta^{+}15.31 \mathrm{d}^{p}$	220	12312	α20 ms	231	37146	ε4.2 d α68.9 y
206	-21517	$\beta^+ 6.243 \mathrm{d}$	220	14246	$\alpha 27.4 s$ $\alpha 4.9 m$	232	39628	α159.2 ky
200	-21545	$\beta^+ 31.55 \text{ y}$	222	17544	β^{-} 14.2 m	233	40946	0.0055%
208	-20273	β^+ 368 ky	222	19731	$\beta^{-}21.8 \mathrm{m}$	234	40940	0.0033%
200	20210	p SOOKY	223	19731	p 21.0 m	235	43723	0.720 76

NRE/MP Radiation Physics – Cont'd.

Nuclide (_z XA)	Mass excess (µu)	Abundance or half-life	Nuclear properties					
			Nuclide (_z XA)	Mass excess (µu)	Abundance or half-life	Nuclide (_z XA)	Mass excess (µu)	Abundance or half-life
236	45562	α23.42 My	249	75947	$\beta^{-}64.15 \mathrm{m}$	102No252	88966	α2.30 s
237	48724	$\beta^{-}6.75 d$	250	78350	f 9 ky	253	90650	α2.30 s
238	50783	99.2745%		,0200	j > ky	255	90949	α ? 55 s
239	54288	$\beta^{-}23.45\mathrm{m}$	97Bk245	66355	ε4.94 d	255	93232	α3.1 m
			246	68664	β^+ 1.80 d	200	/5252	0.5.1 m
₉₃ Np234	42888	$\beta^+4.4 d$	247	70299	α1.38 ky	103Lr257	99603	α646 ms
235	44056	ε396.1 d	248	73076	α9 y	258	101879	α3.9 s
236	46560	ε154 ky	249	74980	$\beta^{-}320 d$	259	102996	α6.3 s
237	48167	α2.144 My			<i>p</i>	260	105572	α3.0 m
238	50940	$\beta^{-2.117} d$	98Cf250	76400	α13.08 y	261	106946	f? α? 39 m
239	52931	$\beta^{-}2.3565 \mathrm{d}$	251	79580	α900 y	262	109695	$\beta^+? 3.6 h$
			252	81619	α2.645 y	202	107075	<i>p</i> : 5.0 f
94Pu236	46048	α2.858 y	253	85127	$\beta^{-}17.81 \mathrm{d}$	104Rf 257	103071	α4.7 s
237	48404	ε45.2 d	254	87317	f 60.5 d	258	103565	$f 12 \mathrm{ms}$
238	49553	α87.7 y	255	91037	$\beta^{-}85 \mathrm{m}$		105626	$\alpha 2.7 s$
239	52157	α24.11 ky	256	93441	f 12.3 m	260	106431	f 20.1 ms
240	53807	α6.564 ky			<i>y</i>	261	108750	20.11iis α65 s
241	56845	$\beta^{-}14.35 \mathrm{y}$	99Es251	79983	ε33 h	262	109920	f 2.06 s
242	58737	α373.3 ky	252	82974	α471.7 d		107780	J 2.003
243	61997	$\beta^{-}4.956$ h	253	84818	α20.47 d	105Db261	112110	x1.8 s
244	64198	α80.8 My	254	88016	α275.7 d		114150	f 34 s
		-	255	90267	$\beta^{-}39.8 \mathrm{d}$		115073	f 29 s
₉₅ Am240	55288	β^+ 50.8 h			<i>p</i>	200	110070	12/3
241	56823	α432.2 y	100 Fm251	81567	β^+ 5.30 h	106Sg 265	121064	α16 s
242	59543	$\beta^{-}16.02 \mathrm{h}$	252	82460	α25.39 h		121933	α20 s
243	61373	α7.37 ky	253	85176	ε3.00 d	200	1	4203
244	64279	$\beta^{-}10.1$ h	254	86848	α3.240 h	107Bh266	127011	α? 1 s
			255	89955	α20.07 h		127741	α? 15 s
₉₆ Cm242	58829	α162.8 d	256	91767	f 157.6 m	201	12// 11	u. 155
243	61382	α29.1 y	257	95099	α100.5 d	108Hs268	132153	α? 2 s
244	62746	α18.10 y					134118	α13 s
245	65486	α8.5 ky	101 Md255	91075	$\beta^+ 27 \mathrm{m}$	=-/		w15.9
246	67218	α4.73 ky	256	94053	β^+ 78.1 m	109Mt270	140720	α? 2 s
247	70347	α15.6 My	257	95535	ε5.52 h	10,1112/0	. 10120	w. 23
248	72342	α340 ky	258	98426	α51.50 d			

Nuclear properties