COMPUTER-AIDED ENGINEERING Ph.D. QUALIFIER EXAM – Spring 2010

THE GEORGE W. WOODRUFF SCHOOL OF MECHANICAL ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY ATLANTA, GA 30332-0405

S.K. Choi, C. Paredis, D. Rosen (Chair), S. Sitaraman, and Y. Wang (observer)

- All questions have a common theme: Winter Olympics
- Answer all questions.
- Make suitable assumptions when data is not available or when you do not follow a question. State your assumptions clearly and justify.
- Show all steps and calculations.
- During ORALS, you will be given an opportunity to tell us how CAE fits into your doctoral research. Please come prepared to make this opening statement.

GOOD LUCK!

Question 1: Numerical Methods

In his preparation for another gold medal in snowboarding, Shawn White has spared no effort. He has been practicing on his own private halfpipe course, which comes equipped with a foamfilled pit for guaranteed soft landings. In addition, he has contacted you with the request to perform a careful analysis of the dynamics of a snowboarder as he reenters the half-pipe after a jump. You recognize that the motion of the snowboarder can be approximately modeled by a differential equation similar to the one for a pendulum:

$$mR^{2}\frac{d\omega}{dt} = mg\cos(\alpha) - \mu(mg\sin(\alpha) + mR\omega^{2})\operatorname{sgn}(\omega)$$

with rotational speed, $\omega = d\alpha / dt$, and the following values:

m = 80kg, $\mu = 0.1$, $g = 10m / s^2$, R = 5m.

(Note: sgn(x) is the signum function which equals 1 if x>0, -1 if x<0, and 0 if x=0).

Questions:

a) Use Heun's method to compute the position of the snowboarder after 1 second. Use the following parameters for solving the initial value problem:

- initial angle = 0 deg (i.e., just entering the semi-circle with the snowboard pointing straight down)
- initial velocity = 5 m/s (straight down)
- integration step size = 0.5 second

The equations for Heun's method are:

$$y_{i+1} = y_i + \phi h$$

$$k_1 = f(t_i, y_i)$$

$$k_2 = f(t_i + h, y_i + k_1 h)$$

$$\phi = \frac{k_1 + k_2}{2}$$

b) With an integration step size of h=0.5 seconds, the true global error for α after 1 second is: $|E_t|=7e-4$. How large would the error have been had you used a step size of h=0.1 seconds? Explain. How large would the error have been had you used a 4th order Runge-Kutta method with step-size of h=0.5 seconds?

Question 2: Geometric Modeling

In this problem you will model part of the slope of a ski jump tower.

Assume that the section of the slope shown below can be modeled as blending two quadratic Bezier patches. The control vertices of this patch are:

Surface A	p _{i0}	p _{i1}	\mathbf{p}_{i2}
\mathbf{p}_{0j}	0,0,0	1,1,0	2,0,0
p _{1j}	0,1,1	1,2,1	2,1,1
p _{2j}	0,0,2	1,1,2	2,0,2
Surface B	r _{i0}	r _{i1}	r _{i2}
r _{0j}	0,0,2	1,1,2	2,0,2
r _{1j}	r ₁₀	r ₁₁	r ₁₂

Bezier surface equations:

$$p(u, w) = \sum_{i=0}^{n} \sum_{j=0}^{m} p_{ij} B_{i,n}(u) B_{j,m}(w)$$
$$B_{i,n}(u) = \binom{n}{i} u^{i} (1-u)^{n-i}$$

- a) Derive the equation of the Bezier patch expand the equation for p(u,w) below so that your answer is in terms of the blending functions polynomials in u and w.
- **b**) Now, derive the matrix form of the surface equations.
- c) Compute the point and the unit normal to the Surface A at u = 0, w = 0.
- **d**) Assume that G^1 continuity is desired between surface patches which means the tangent plane of patch A at u = 1 must coincide with that of patch B at u = 0 for $w \in [0,1]$. Determine the unknown control points, r_{10} , r_{11} , and r_{12} .

Problem 3: Finite Element Analysis

A totem pole like structure in one of the Olympic venues is constrained between two rigid flat surfaces, as shown in the figure. The top part of the structure is a cylinder with a diameter D and a height H, the middle part is a cylinder with a diameter 2*D and a height H, and the bottom part is a cylinder with a diameter 3*D and a height H. There are overhangs that are rigidly attached to diametrically opposite sides of the cylinders as shown in the figure. The overhangs have a length R and have a square cross-section with a side w. Force F is applied at the tip of each overhang. The entire structure is made of the same material with a modulus of elasticity E.

- finite-element 1. Using appropriate formulation, determine how much Fwill move at location A
- 2. State all of your assumptions clearly.
- 3. Show all of your calculations.
- 4. Write down necessary stiffness matrices.
- 5. Show the boundary conditions and loading conditions. Solve for movement at A.

Element A - Stiffness Matrix

$$\begin{bmatrix} K \end{bmatrix} = \frac{EA}{L} \begin{bmatrix} l^2 & lm & -l^2 & -lm \\ lm & m^2 & -lm & -m^2 \\ -l^2 & -lm & l^2 & lm \\ -lm & -m^2 & lm & m^2 \end{bmatrix} \qquad l = \frac{x_2 - x_1}{L} \qquad m = \frac{y_2 - y_1}{L}$$

$$\begin{bmatrix} K \end{bmatrix} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Element B - Stiffness Matrix

$$[K] = \frac{2EI}{h^3} \begin{bmatrix} 6 & -3h & -6 & -3h \\ -3h & 2h^2 & 3h & h^2 \\ -6 & 3h & 6 & 3h \\ -3h & h^2 & 3h & 2h^2 \end{bmatrix}$$

17

where E, A, and L are the Modulus of Elasticity, Area of cross-section, and Length of the element respectively; *l* and *m* are direction cosines of the element with respect to X and Y axes.

where E, I, and h are the Modulus of Elasticity, Moment of inertia, and Length of the element respectively;