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Space and Spaceflight 

 
 
 
• All questions in this exam have a common theme: Space and Spaceflight 
 
• Answer all questions. 

 
• Make suitable assumptions when data is not available or when you do not follow a question.  

State your assumptions clearly and justify. 
 

• Show all steps and calculations. 
 

• During ORALS, you will be given an opportunity to tell us how CAE fits into your doctoral 
research.  Please come prepared to make this opening statement. 

 
GOOD LUCK! 

 
 



Question 1 - Geometric Modeling  
  
In this problem you will model the front-end of a space 
shuttle geometrically.  Consider the current space shuttle 
shown to the right.  The specific curvatures of the front-
end reflect a balance among aerodynamics, strength, 
cockpit space, and manufacturability.  I am only 
interested in the front-end shape (forward fuselage and 
crew cabin areas, not the payload bay door area or mid-
fuselage). 

Develop a new shape for the forward fuselage. 

 

a) Sketch a 2D curve representing the front fuselage 
shape (profile) on your answer sheet.  Develop a 
model of the curve as a 2D composite, cubic Bezier 
curve.  Ensure G1 continuity between curve 
segments.  Explain how you ensure G1 continuity.  
Show the curves with control vertices.   

b) Sketch the same 2D curve again.  This time model the curve as a single cubic B-spline curve.  Explain 
why this is possible (single curve segment) with B-splines, but not with Bezier curves.   

c) Will your composite cubic Bezier curve have exactly the same shape as your single cubic B-spline 
curve?  Why or why not?  Explain. 

d) Assume that a cubic Bezier curve has the following control vertices: (20,5), (1,6), (22,-1), (0,0).  
Compute the 2D (X, Y) coordinates of the point at u = 0.7 on this curve. 

e) Derive the equations for a linear B-spline curve from point (1, 0) to point (11, 5).  Show your 
derivation and explain your approach, including any short-cuts you take. 

 

Bezier curve equations: B-spline curve equations: 

,
0

( ) ( )
n

i i k
i

u N u
=

= ∑p p

1
,1

1,
( )

0,
i i

i

if t u t
N u

otherwise

,
0

,

( ) ( )

( ) (1 )

n

i i n
i

i n i
i n

b u p B u

n
B u u u

i

=

−

=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

∑
%

+≤ <⎧
= ⎨
⎩
( ) ( ), 1 1, 1

,
1 1

( ) ( )
( ) i i k i k i k

i k
i k i i k i

u t N u t u N u
N u

t t t t
− + + −

+ − + +

− −
= +

− −
 

 

 

 

 



Question 2 – Finite Element Analysis 
A triangular structure in the spacecraft has a base width of 2 m and a length of 4 m.  The thickness of the 
structure is 10 mm.  The modulus of elasticity of the structure is 120 GPa.  The base of the triangle is 
rigidly attached to a surface as shown in the figure below.  The apex is of the triangle is attached to another 
rigid surface with a string of 2 mm length.  The string is capable of offering resistance only under tension.  
A horizontal sinusoidal load P (t) = 7500 sin πt kN is applied at a distance of 2 m from the base as shown 
in the figure.    
 
You are asked to determine 
the displacement at the 
point where the load is 
applied, when time t varies 
from 0 to 1 s.   

kNttP )sin(7500)( = π

2 mm 

2 m  
Use an appropriate finite-
element formulation to 
solve the problem.  
1. State all of your 

assumptions clearly. 
2. Show all of your 

calculations. 
3. Show the boundary 

conditions and loading 
conditions. 

4. Write down element 
stiffness matrix and assembly stiffness matrix. 

5. Determine how the displacement at the point where the load is applied will change, when the time t 
varies from 0 to 1 s. 

 
Element A - Stiffness Matrix
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Element B - Stiffness Matrix 
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where E, I, and h are the Modulus of Elasticity, Moment of 
inertia, and Length of the element respectively; 

where E, A, and L are the Modulus of Elasticity, 
Area of cross-section, and Length of the element 
respectively; l and m are direction cosines of the 
element with respect to X and Y axes. 

4 m 

Figure not to 

2 m 



Question 3 – Numerical 
Methods 
 
The dynamics of Low-Earth 
Orbit satellites are significantly 
influenced by the aerodynamic 
drag.  Although the air density is 
very small at these altitudes, the 
drag will still slow down the 
satellite sufficiently that it will 
lose altitude and burn up in the 
atmosphere unless it is provided 
a small boost on a regular basis 
to regain its original velocity.  In 
designing a satellite, it is 
therefore important to have a 
good model for the air density.  
But modeling the air density 
turns out to be challenging 
because it depends strongly on the solar cycle.  Increases in solar activity make the atmosphere swell up 
and reach further into space, increasing the drag on satellites significantly.  A typical satellite flying at an 
initial altitude of 500km would last about 30 years under the conditions of a solar cycle minimum while 
only 3 years under a solar cycle maximum. 
 
You are in charge of developing a model for the solar activity.  Given the historical data below, you decide 
as a first approximation to fit a polynomial to the data and then use the best fit polynomial in your orbit 
calculations for the satellite design you are working on. 
 
Time: ti 
[years since 
Jan 1 2005] 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 

Flux: yi 
[sfu] 104 85 96 76 84 89 76 82 
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Questions: 

a. Determine the coefficients of a parabola that fits the data above in a least-squares sense.  
Start by deriving the equations for determining the linear least-squares fit of a parabola. 

b. Which metric would you use to assess the goodness of fit of your solution? 
c. To improve the accuracy of your model, you decide to consider higher-order polynomials.  

What are some of the considerations in determining the best order of the polynomial for 
your model? 

d. Provide your assessment of the overall approach suggested in this problem: Is using a 
polynomial curve fit a good method for modeling future solar activity? 


