
Problem #1

Consider a pressure-cooker (pot to cook food at elevated pressure) with a pressure relief valve, which prevents the pressure within the cooker from exceeding 175 kPa, as shown above. It initially contains 1 kg of water and has a volume of 0.006 m^3 . Heat is supplied to the cooker at a rate of 500 W for 30 minutes after the operating pressure of 175 kPa is reached.

- i. Find the temperature at which cooking takes place, assuming there is always some liquid in the cooker.
- ii. Find the mass of water left in the cooker at the end of the process assuming no water escapes prior to the time at which the operating pressure is reached.

Note: Use the table following this problem.

918 Thermodynamics I

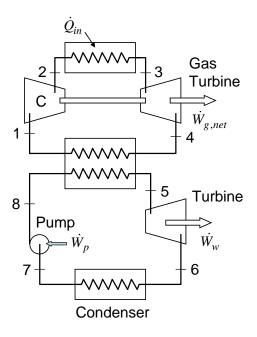
TABLE A-5

.

.

Saturated water-Pressure table

	Specific volume, m³/kg		Internal energy, kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg · K			
Press., <i>P</i> kPa	Sat. temp., <i>T_{sat} °</i> C	Sat. liquid, <i>v_f</i>	Sat. vapor, v _g	Sat. Iiquid, <i>u_f</i>	Evap., <i>u_{fg}</i>	Sat. vapor, <i>u_g</i>	Sat. Iiquid, <i>h_f</i>	Evap., <i>h_{fg}</i>	Sat. vapor, <i>h_g</i>	Sat. liquid, <i>s_f</i>	Evap.,	Sat. vapor,
1.0 1.5 2.0 2.5 3.0 4.0 5.0 7.5 10 15 20 25	6.97 13.02 17.50 21.08 24.08 28.96 32.87 40.29 45.81 53.97 60.06 64.96	0.001000 0.001001 0.001002 0.001003 0.001004 0.001005 0.001005 0.001008 0.001010 0.001014 0.001017 0.001020		29.302 54.686 73.431 88.422 100.98 121.39 137.75 168.74 191.79 225.93 251.40 271.93	2355.2 2338.1 2325.5 2315.4 2306.9 2293.1 2282.1 2261.1 2245.4 2222.1 2204.6 2190.4	2384.5 2392.8 2398,9	29.303 54.688 73.433 88.424 100.98 121.39 137.75 168.75 191.81 225.94 251.42 271.96	2484.4 2470.1 2459.5 2451.0 2443.9 2432.3 2423.0 2405.3 2392.1 2372.3 2357.5 2345.5	2513.7 2524.7 2532.9 2539.4 2544.8 2553.7 2560.7	0.1059 0.1956 0.2606 0.3118 0.3543 0.4224 0.4762 0.5763 0.6492 0.7549 0.8320	8.0510 7.9176 7.6738 7.4996 7.2522 7.0752	8.827 8.722 8.642 8.576 8.473 8.393 8.250 8.148 8.007 7.907
30 40 50 75 100 101.325 125 150	69.09 75.86 81.32 91.76 99.61 99.97 105.97 111.35	0.001022 0.001026 0.001030 0.001037 0.001043 0.001043 0.001048 0.001053	5.2287 ; 3.9933 3.2403 2.2172 1.6941 1.6734 1.3750 1.1594		2178.5 2158.8 2142.7 2111.8 2088.2 2087.0 2068.8 2052.3	2467.7 2476.3 2483.2 2496.1 2505.6 2506.0 2513.0 2519.2	289.27 317.62 340.54 384.44 417.51 419.06 444.36 467.13	2345.5 2335.3 2318.4 2304.7 2278.0 2257.5 2256.5 2240.6 2226.0	2617.5 2624.6 2636.1 2645.2 2662.4 2675.0 2675.6 2684.9 2693.1		6.9370 6.8234 6.6430 6.5019 6.2426 6.0562 6.0476 5.9100 5.7894	7.830 7.767 7.669 7.593 7.455 7.358 7.358 7.354 7.284 7.223
175 200 225 250 275 300	116.04 120.21 123.97 127.41 130.58 133.52	0.001073	1.0037 0.88578 0.79329 0.71873 0.65732 0.60582	486.82 504.50 520.47 535.08 548.57 561.11	2037.7 2024.6 2012.7 2001.8 1991.6 1982.1	2524.5 2529.1 2533.2 2536.8 2540.1 2543.2	487.01 504.71 520.71 535.35 548.86 561.43	2213.1 2201.6 2191.0 2181.2 2172.0 2163.5	2700.2 2706.3 2711.7 2716.5 2720.9	1.4850 1.5302 1.5706 1.6072 1.6408	5.6865 5.5968 5.5171 5.4453 5.3800 5.3200	7.171 7.127 7.087 7.052 7.052 6.991
375 400	136.27 138.86 141.30 143.61	0.001076 0.001079 0.001081 0.001084	0.56199 0.52422 0.49133 0.46242	604.22	1973.1 1964.6 1956.6 1948.9	2545.9 2548.5 2550.9 2553.1	573.19 584.26 594.73 604.66	2155.4 2147.7 2140.4 2133.4	2728.6 2732.0 2735.1 2738.1	1.7005 1.7274 1.7526	5.2645 5.2128 5.1645 5.1191	6.9650 6.9402 6.9171 6.8955
500 550 500 550	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.29260	639.54 655.16 669.72 683.37	1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2108.0 2096.6 2085.8 2075.5	2748.1 2752.4 2756.2	1.8970	4.9603 4.8916 4.8285	6.8561 6.8207 6.7886 6.7593 6.7322
	164.95 167.75	0.001108 0.001111	0.27278 0.25552			2571.8 2574.0	697.00 ^{\$} ./ 709.24			1.9918 2.0195		6.7071 6.6837


With Marine Lange Colo

Problem #2

A nuclear power plant uses a combined power cycle, as shown in the figure below. Helium is used as the working fluid for the closed gas turbine. The exhaust is used to power the vapor power cycle with water as the working fluid. Helium gas enters the compressor at $T_1 = 350$ K and $P_1 = 120$ kPa and exits at $T_2 = 958$ K and $P_2 = 1200$ kPa. The inlet and outlet temperatures of the gas turbine are 1560 K and 743 K, respectively. The net power output from the gas cycle is $\dot{W}_{g,net} = 20$ MW. The isentropic efficiencies of both the gas turbine and the compressor are 87%. For helium gas, $c_p = 5.19$ kJ/kg·K.

For the vapor cycle, steam enters the turbine at 8 MPa and 400 °C, and leaves the turbine at a pressure of 6 kPa. After the condenser, saturated liquid enters the pump. Both the turbine and the pump may be assumed adiabatic and reversible.

- (1) Draw h s diagram for the gas power cycle and use it to find (1a) the gas flow rate and (1b) the thermal efficiency of the gas cycle?
- (2) Determine (2a) the mass flow rate of the steam, (2b) the required pump power, and (2c) the temperature at the pump exit T_8 .
- (3) Determine (3a) the output power of the steam turbine and (3b) the overall thermal efficiency of the combined cycle.

	т	Р	Remarks
1	350 K	120 kPa	
2	958 K	1.2 MPa	
3	1560 K		
4	743 K		
5	400 ºC	8 MPa	
6		6 kPa	
7			Saturated Liquid
8	?		

Problem #3

Helium gas flows steadily through an insulated nozzle, entering at 500 K, 4 bar, 3 m/s and exiting at 400 K, 2 bar. Find the exit velocity, the isentropic efficiency of the nozzle, and the specific rate of entropy production in the nozzle. Assume helium is an ideal gas with constant specific heats, a molecular weight of 4 kg/kmol, and a ratio of specific heats of 5/3.