

- 1. A propeller-driven airplane cruises at speed V. The airplane is equipped with a single propeller of diameter d that develops a thrust T when operating at N revolutions per minute. It is given that the air density and viscosity at the cruise altitude are ρ . and μ , respectively.
 - a. Using dimensional analysis, determine the relevant dimensionless groups for this problem. Use N, V, and ρ as the repeating parameters..
 - b. The single propeller system described above is replaced a two-propeller system where the new propellers are geometrically-similar to the single propeller, and together produce the same total thrust so that the airplane can fly at the same cruise speed and altitude. Determine the diameter d_2 and the rotational speed N_2 of each of the replacement propellers.
 - c. What change in power, if any, is required to operate the two propellers?
 - d. Based on your dimensional analysis, determine whether the viscous effects are the same for the propellers in each of the systems. Explain briefly

- 2. A horizontal circular air jet strikes a stationary flat plate as shown in the figure below. The jet velocity and diameter are V_j and D_j , respectively. Assume that the air velocity magnitude remains constant as the air flows over the plate surface in the direction shown, (Hint: this means that $V_j = V_2 = V_3$, and the shear force acting along the plate is zero)
 - a. Determine the magnitude of F_A , the anchoring force required to hold the plate stationary.
 - b. Determine the magnitude of F_A , the anchoring force required to allow the plate to move to the right at a constant speed V_p .
 - c. If the plate is held stationary, determine the fraction of mass flow along the plate surface in each of the two directions shown.

3. A <u>porous</u> horizontal plate moves to the right with a constant velocity *U* through a still viscous Newtonian fluid of constant density ρ and constant viscosity μ . Suction is applied through the plate so that the fluid has a speed *V* normal to the surface of the plate. You may assume that: the flow is steady and laminar, body forces and pressure gradients are negligible, the flow is one-dimensional, and there is no flow normal to the page.

- a. What are the boundary conditions on the velocity field $\vec{\mathbf{V}}$ for this flow?
- b. Find the velocity field $\vec{\mathbf{V}}$.
- c. What happens to $\overline{\mathbf{V}}$ if fluid is <u>injected</u> at a constant speed *V* instead of suctioned through the porous plate?

- 4) A 2-m-diameter circular tank open at the top and partially filled with water rotates about its vertical axis at a constant rate of rotation, ω . When the tank is at rest, the height of the water in the tank is 1 m.
 - a. Describe the motion of the water after the tank has been rotating at a constant ω for a long time.
 - b. What is ω_m at which the bottom surface of the tank is first exposed to air? (no water spills out of the tank)
 - c. Determine the maximum water height when the tank is rotating at $\omega = \omega_m$.