
1) A cylindrical container that contains liquid is rotated about its centerline at a constant 
angular speed Ω.  The flow has an azimuthal velocity Vθ that varies with radial coordinate 
r and the time after startup t; the other velocity components are zero.  This velocity is a 
function of Ω, T, r, t, and the kinematic viscosity of the liquid ν. 
 
a) Determine the number of independent dimensionless groups dimensionless groups (Π 

terms) required to determine Vθ, and find these dimensionless groups.   
 
b) After some startup time T, the flow becomes steady.  If I have two liquids, A and B, 

with kinematic viscosities νA and νB, and A Bν > ν , how will the startup times 
required to reach steady-state for liquids A and B, or TA and TB, compare?  In other 
words, will A BT T< , A BT T= , or A BT T> ?  Explain your answer (please be brief!). 

 
c) We know that for the steady-state case, the fluid is in solid-body rotation.  Show this 

using dimensional analysis, and comment on the implications of your result. 
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2) 

 
 
A pair of infinitely long and parallel plates separated by a distance d have a viscous fluid 
of kinematic viscosity ν in the space between them.  The plates and fluid are initially at 
rest.  At time 0t = , the lower plate impulsively starts, moving to the right with a constant 
speed U.  Assuming that we have only unidirectional flow along x, negligible body 
forces, and zero pressure gradient, we can show that the velocity is only a function of y 
and t.  The governing equation is then the diffusion equation: 
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a) Using appropriate scales for length and velocity and the scale 2 /d ν  for time, scale 

the governing equation and pose the correct boundary and initial conditions in 
dimensionless form. 

 
b) Solve the problem of part (a) by the method of separation of variables.  You do NOT 

need to evaluate the integrals necessary for the final determination of the coefficients, 
but must explicitly state what they are. 

 
c) In the absence of an upper plate (the fluid now extends to infinity in the y-direction), 

this problem is identical to Stokes’ First Problem (also known as the “Rayleigh 
problem”), which has a similarity solution in terms of the dimensionless similarity 

variable 
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ν
.  Determine, by substituting this variable into the dimensional 

governing equation and appropriate boundary and initial conditions, whether the 
problem of part (a) can also have a similarity solution in terms of η. 
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3) Two layers of immiscible liquids of densities ρ1 and ρ2 (ρ1 < ρ2) and the same 
viscosity μ, are placed in a sealed container as shown in the figure below.  The air 
pressure above the top liquid layer pc can be varied externally.  A buoy that carries an 
instrumentation payload of weight W is placed near the interface between the two 
liquid layers.  The buoy is made of a bottomless, thin cylindrical shell (diameter D 
and its height H) of negligible weight and wall thickness, and contains trapped air as 
shown in the figure.  It is assumed that the presence of the buoy does not disrupt the 
interface between the two liquid layers. 

a) Explain why and how the buoy’s position (relative to the liquid interface) 
varies with the pressure pc. 

b) Determine the dependence of the buoy’s position (relative to the interface) on 
the pressure pc.  Assume that the buoy position for some pressure pc = p 0

c  (for 
which h1 = 0

1h  and h2 = 0
2h , etc.) is known. 

c) Determine the critical pressure for which the top surface of the buoy is at the 
level of the interface between the two liquids. 

d) Explain what happens to the buoy when pc exceeds the critical pressure from 
part (c). 
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4) Consider a thin boundary layer formed on one side of a flat plate in free stream 
incompressible flow with zero pressure gradient, as shown in the figure.   

 
a) Apply the conservation of mass and momentum to the infinitesimal control 

volume shown in the figure.   You can adjust the height of this control volume, as 
you find most reasonable. 

 
b)  Use the conservation equations derived in part (a) to obtain the wall shear stress, 

τw, only in terms of the momentum thickness, free stream velocity, and fluid 
density.   

 Note:  The momentum thickness, δt, is given by   δt =  dy 
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U is the free stream velocity, u is the x-component of velocity profile, and δ is the 
boundary layer thickness. 
 

c) Using the definition of momentum thickness, explain (briefly) the relation for the 
wall shear stress found in (b). 
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