Dynamics Systems \& Control Ph.D. Qualifying Exam Spring 2018

Instructions:

Please work 3 of the 4 problems on this exam. It is important that you clearly mark which three problems you wish to have graded. For the 3 problems that you select, show all your work in order to receive proper credit. You are allowed to use a scientific, non-graphing calculator. Be sure to budget your time; concentrate on setting up the problem solution first and leave algebra until the end. When necessary, you may leave your answers in terms of unevaluated numerical expressions. Good Luck!

Problem 1: The system illustrated below a model of shock absorbing seat for a hypersonic skipglide jet. The mass m_{p} represents the passengers body mass, k_{c} and c_{c} represent the stiffness and damping of the seat cushion, mass m_{s} is the mass of the seat, and k_{s} and c_{s} represent the stiffness and damping of the seat suspension mechanism. Input u is the attitude of the jet with respect to the ground. The quantities y_{p} and y_{s} are the displacements of the passenger and seat, respectively, when the jet is on the ground $(\mathrm{u}=0)$. Gravitational acceleration g is constant.
a) Find the transfer function $Y_{p}(s) / U_{j}(s)$ for this system.

b) Let's say that two people are sitting in a pair of these seats, and that one passenger is twice the mass of the other (e.g. a parent and child). Quantitatively discuss the difference in response characteristics between these two independent systems when subjected to a step input (i.e. sharp jet ascent), assuming both seats have the same mechanical properties.
c) If the jet undergoes sudden turbulence, in the form of a unit impulse, how would those response characteristics change? Would the amplitude of passenger motion be greater during ascent or descent?
d) If you have control parameters k_{s} and c_{s}, for the seat suspension, how would change them to reduce the amplitude a passenger's vertical motion (relative to the floor of the jet)?

Problem 2: A mass m is tied to a string which is under a T. The string is attached to walls at two endpoints as shown. Assume that the tension T is constant for any small vertical displacement x of the mass. For the remainder of this problem, neglect gravity, neglect any material damping from the string or drag from the air, and assume that x is small compared to the length of the string (given by $a+b$).

a) Derive the equation of motion for this system.
b) Give a very brief description of the stability properties of this system and the location of the system poles in the complex plane (1-2 sentences should be sufficient).
c) Find an expression for the natural frequency of the system. Suppose the string is 100 cm long, the tension is 1 N , and the mass is 1 kg . Where should the mass be placed on the string to achieve a natural frequency of $2 \mathrm{rad} / \mathrm{s}$?
d) Suppose that x and \dot{x} can be measured, and we place an actuator in the vertical direction that applies a force F to mass. Design a feedback controller such that the system is critically damped (specify the controller gain(s), assuming the same system parameters as in part c).

Problem 3: Consider the following feedback system with a loop gain $k(>0)$ and a parameter a $(-\infty<a<\infty)$.

(a) Consider the case where $a=2$.
(a-1) Sketch the root-locus plot. Determine intersection of the asymptotes, break-in/away points, if exist. You do not need to determine the angle of departure/arrival from /to complex poles/zeros.
(a-2) Discuss the stability of the closed-loop system with respect to the magnitude of k.
(a-3) There exists a value of k such that the closed-loop system is critically damped. TRUE or FALSE? Briefly explain why.
(b) Find the range of a so that the closed-loop system is stable for ANY $k(>0)$
(c) Discuss any potential issues regarding the closed-loop stability when $a=3$.
(d) Assume the loop-gain and parameter a are chosen appropriately so that the closed-loop system is stable. Show that the closed-loop system has a steady-state-error for a step input.

Problem 4: The bode diagram of a linear time invariant system with transfer function $\mathrm{G}(\mathrm{s})$ is given by

a) Find G(s) from the bode diagram.
b) Design a suitable feedback controller C(s) (e.g., P,PD,PI,PID,Lead,Lag,...) such that the compensated system $\mathrm{C}(\mathrm{s}) \mathrm{G}(\mathrm{s})$ (see the block diagram below) has a phase margin of at least 50 degrees and a gain cross-over frequency (i.e., the frequency at which $\left|\operatorname{CG}\left(j \omega_{c}\right)\right|=1$) of $\omega_{c} \geq 10$ $\mathrm{rad} / \mathrm{sec}$. Find all the gains/parameters associated with your controller.

c) Sketch the bode diagram of the compensated system $\mathrm{C}(\mathrm{s}) \mathrm{G}(\mathrm{s})$ you found in (b).

